
Agile Release Planning -
My practical methods

One real-world approach to initial
agile release planning for one team,
assuming continuous release plan

refactoring

Joseph Little

Agile Release Planning - My
practical methods
One real-world approach to initial
agile release planning for one team,
assuming continuous release plan
refactoring

Joseph Little

This book is for sale at
http://leanpub.com/joesagilereleaseplanning

This version was published on 2017-06-12

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

© 2013 - 2017 Joseph Little

http://leanpub.com/joesagilereleaseplanning
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Contents

Introduction . 1
Planning, Not Plans 2
Emerging . 2
Early Edition . 3
About this book 3
Warnings . 5

Comments on the ‘no estimates’ idea 6

Why Agile Release Planning? 8

The Story Begins . 11
Next steps . 12
What Happened 12
What Happened Next? 13

My Approach — Summary 15
The People . 15
The Process . 15

My Approach - The Details 21

The People . 22

Vision . 23

CONTENTS

Product Backlog . 28
Roles . 28
User Story Workshop 30

Business Value . 39
Business Drivers 40
Priority Poker . 40

Effort . 48
Definition of Done 48
Planning Poker . 53

The R Factor . 60

Risks, Dependencies, Learning, MMFS, Other 62

Completing the Plan 67
Estimating Velocity 68
Finishing the Plan 70
Communicating the Plan 71
The Fix-It Plan . 74
‘Finalizing’ the Plan 74

The ‘OTHER’ . 76
Other steps or activities 76
I-A-D . 77

Closing Up . 80
When is the Initial Release Planning completed? . 80
What do you have ‘in hand’ at the end? 82

The Real Value . 85

Refactoring the Release Plan 88

CONTENTS

Level 1 Planning and Level 2 Planning 96
My key point . 99

Suggested, not Prescriptive 101

Final Comment . 102

FAQ . 103

Note on the Author 110

Glossary . 111

Introduction
This book ismainly about initial, quick, up-frontAgile Release
Planning (ARP). We define ARP as the initial work done to
create the Product Backlog and release plan before you start
Sprinting.

ARP is about people, and getting them to work together.

In this book, we are talking about my usual Agile Release
Planning approach, meaning that it is:

• For one team
• My usual way (your way may be different; even I may
do it differently in some situations)

• For a relatively small set of work (I use six months as
the example)

Agile Release Planning is:

• More about the people than the plan
• Assuming the centrality of knowledge creation
• Assuming continuous refactoring of the plan
• Assuming youwill use common sense in applying these
ideas to your situation

So, this book has a limited scope.

Introduction 2

Planning, Not Plans

The first thing to emphasize is that the initial plan is only
the initial plan. We immediately start to do what I call
Release Plan Refactoring every Sprint. This is the idea that
for every Sprint we refactor the release plan to reflect all new
information.

Some of you have heard about Product Backlog Grooming or
Product Backlog Refinement. To me, Release Plan Refactoring
includes that idea (or those ideas) and more, as you will see.

The basic idea is that we are continuously planning instead of
choosing to “plan the work upfront, and just work the plan.”

To summarize: We are using planning to help us learn as fast
as possible, and to deliver a

better product (at the time of delivery) and more quickly.

Emerging

A key idea is that we do not know everything upfront — of
course! — and that new knowledge is continuously emerging
during the course of the effort. This is one of the key reasons
we must continuously re-plan.

Introduction 3

Early Edition

This is an early edition of this book — Version 1.4.01.

We have been making improvements, as we make it better for
the LeanPub format. See LeanPub.com¹.

I particularly want to thank Tom Gray, Jane Little and Kerry
Lengyel for proofreading it and fixing many of my errors.

I consider this version ‘ready,’ but I am still open to feedback.

I urge you to sendme comments at jhlittle@leanagiletraining.com

About this book

This book is for beginner to intermediate teams in typical
situations. Your mileage may vary (YMMV), as they say.
Advanced teams, particularly, may wish to try other ap-
proaches, although we think we have some ideas here that
will challenge and improve your practice is this area.

We discuss, in later sections, Release Plan Refactoring — the
revisions to the release plan that should happen every Sprint.
Some changes will be minor and somemajor, but it is essential
that revisions be considered and probably made every Sprint.
Too many things are changing in the real world.

This proposed approach is probably not for everyone. I am not
trying to propose a “one and only one” pattern. Still, this is a
pattern that I think works in many or most situations, and it
gives the basic ideas I try to apply in almost all situations. But
it might not fit your situation.

¹https://leanpub.com/joesagilereleaseplanning

https://leanpub.com/joesagilereleaseplanning
https://leanpub.com/joesagilereleaseplanning

Introduction 4

When first doing this, I recommend a team select the next six
months of work for that team. From experience, this seems
about the right size. Enough work for them to learn how to
do Agile Release Planning (ARP). And not so much work that
it becomes tedious. (If it is tedious, they will not learn ARP as
well.) If you have 2 years worth of work, then I recommend
the first time, you only plan the first six months of work this
way.

Also, obviously, this should be one of the top sets of work for
your organization — a top product or project.

When learning ARP, keep it to only one team. KISS (Keep It
Stupid Simple).

If the work is that size — about six months — then I want
the initial release plan to be done quickly, in about one day,
up-front. (It might take a bit longer.)

This book describes what I would do for ARP given the above
situation.

I never believe in the initial plan. It must be improved every
Sprint. It will never be perfect. It must be continually changed
to adapt to new information and to a changed situation, and
change is of course always happening.

Note: Despite ‘not believing’ in the initial plan, sometimes
we are forced by circumstances to make important business
decisions based on the initial information or forecast. I think
we can do that to some degree, as I will discuss later, but these
are risky business decisionsmadewith ‘too little’ information.
Still, most business decisions are made with incomplete infor-
mation, and all business decisions are risky, to some degree.

If done with reasonable professionalism, I think the risk is
somewhat reduced compared to a similar waterfall plan.

Introduction 5

Warnings

Not all situations require Agile Release Planning (ARP). For
example, if you release every Sprint, then release planning (or
even a product roadmap) may not be needed at all.

I especially warn you against taking too long to do release
planning. Many people think too much up-front, expecting to
arrive at close to perfect information. In our business of new
product development, I have never seen anyone have close to
perfect information up-front. Usually, to use technical terms,
we are lucky if we have C-level information up-front. (C-level
information is below A-level or B-level information. It might
be defined as ‘not too crappy.’) But then, we are at Day 0,
which is the day of the effort when we are dumbest.

Some people in Agile recommend that we think very little
(almost not at all) up-front. This is consistent with the ‘no-
estimates’ thinking. I think, for virtually all of the situations I
am in, this is not useful advice. For example, useful informa-
tion or disagreements will not be sufficiently discussed.

So, use good judgment in balancing these concerns — both, in
my experience, are legitimate.

Comments on the ‘no
estimates’ idea
In a sense this book itself is an extended comment on the ‘no
estimates’ idea.

But first, let’s define the ‘no estimates’ idea. The idea is that
it is not useful, and maybe worse, to estimate any work.
Usually, but not always, this idea is joined with the idea that
all estimates are terrible and have to be terrible. And, usually,
also joined with this idea, is the idea that managers are ‘bad’,
at least in the sense that a manager will use any estimate in a
bad way.

So, first, let’s agree on two things.

Estimates are often inaccurate. Significantly inaccurate, espe-
cially at first.

And managers can and do mis-use estimates sometimes. This
is true in our opinion and it is sad. It may not be happening
at your company, but it happens far too often out there.

But….

Estimates are needed. We have to make business decisions
with the best available business information, even if that
information is weak. A business needs this, and customers
need this. Time is important, and ‘expected delivery time’ is
a key factor in decisions that businesses and customers must
make.

Comments on the ‘no estimates’ idea 7

Estimates are not always terrible. And people can learn how
to estimate or plan better.

More importantly, in the process of planning, much learning
happens. So, we agree, do not take your estimates too seri-
ously, and do not take any plan too seriously. Things will
change. As many have said, it is not about the plan, but the
planning (by the people).

We think you and others can make managers better. And
managers can learn. So that managers will no longer ‘blame
us’ when we cannot fulfill the initial plan. But this is an
important and difficult education process in many cases. And
it will not always be successful. You have to decide when to
give up (and some of you should, and move to a different
manager, or maybe a different company).

If you are a ‘no estimates’ person, let me ask that you not
pass judgment on the ARP idea until you have done this work
with me in a workshop. If you are already convinced that no-
estimates is correct, it is extremely unlikely that any words
will convince you otherwise. But an experience might. Try
the experience. Let me add: It is not the main purpose of this
book to address your concerns. We are mainly trying to help
people who want to do planning and estimating, and do it
better.

Why Agile Release
Planning?
Here are some values, principles and practices around Agile
Release Planning (ARP) that I have taught to numerous teams.
In general, the teams have found them very useful. While you
may not find all of them useful, I hope at least they will make
you think, and at least that thinking will make your results
better.

The phrase ‘release planning’ is apparently a loaded phrase
for many people. My suggestion: When talking to others, be
sure you are talking about the same thing, and expect good
communication to take longer than usual.

We probably should define release planning — I find there
are many different definitions out there. I can be certain
that some readers are right now imagining a very different
elephant than what I am trying to talk about. You may be
imagining something closer to waterfall release planning —
and I mean agile, adaptive release planning.

I led a discussion at the Ottawa Agile and Scrum groups some
months ago.

I asked the group to come up with some reasons to do
release planning. In essence, these reasons represent the meta
‘purposes’ of release planning, and these purposes are what
we should optimize in our practical approach to doing ARP.

The group came upwith many good ideas, almost all of which
I agreed with.

Why Agile Release Planning? 9

Here are some purposes that are not always mentioned, and I
think they are critical:

1. Team building. A set of work or exercises that allows
the newly formed Team or Scrum Team to start to
think of themselves as a team, and do some Forming,
Storming, Norming and Performing to start to become
a team.

2. Realize where they disagree. Often we think people
agree what the work or product is all about. In waterfall
release planning, we have no means (or only a poor
means) to identify where we disagree. If ARP could
only identify (better) where we disagree, then we all
could learn from that.

3. Start to get the whole team on the same page. For
example, it might be useful for the whole team to be,
at a working level, on the same page about the product
features and the effort. This might include: the vision,
a good-sized feature list, where the Business Value is
highest, what will cost the most to build, etc.

4. Knowledge creation together. By exposing different
explicit and tacit knowledge, the team can create new
knowledge about the Business Value, the product and
the work. This, in my view, is extremely valuable. They
can also share, across the team, knowledge that each
individual may have.

5. Motivation. The team’s motivation increases in at least
three ways — probably more. One, they feel they are
no longer being given the ‘mushroom treatment.’ So,
this de-motivation is gone. Two, they feel they were
part of creating this work. This is no longer the Project
Manager’s project and they are helping. It is my project

Why Agile Release Planning? 10

(or our product). Three, they feel a sense of relative
power over the work. No longer is the work the large
unknown thing — it is much better known — and we
(the team) have all shared and created knowledge about
it. Four, they hopefully start to feel that ‘this is good’
and the customers will like it, so they feel a sense of
purpose about the product, and about their work as
a Team. This motivational effect is quite important.
Where there is a will, there is a way.

If you see these purposes of ARP as important, then you want
to do it a different way. I think #3, #4 and #5 are especially
important.

The Story Begins
One day in 2011 I got an email from Mark, an attendee at a
course some months prior.

He was working at a software company that builds software
for railroads, and he wanted to start a new software product
that would support managing the repairs of railroad cars (a
big business).

He said, “Joe, I want to get a whole bunch of people in a room
and figure this product out. We are in the early stages, we
think we have some customers, and I think I can get them to
collaborate.”

This started the conversation.

He became the Product Owner (PO) and I became the Scrum-
Master (SM) at least for purposes of the ‘release planning’
work that we did.

Later, I meet with his group that included both internal people
and external customers, and we did most of what is described
here.

That was the first time I did almost all of the things described
in this book.

The exact way it starts for you may be similar or may be a bit
different. It does not have to begin any particular way.

And eventually you identify some people — often the PO and
the SM.

The Story Begins 12

Usually, some sort of rough ‘planning’ has been done (I call
this generically “Level 1” planning), and then they give it to a
team, and the team (with others) does “Level 2” planning.²

Next steps

Mark and I discussed the people. Who should we include?
We agreed to include the whole Scrum Team and about
five business stakeholders. In this case, all five were real
customers.

It made me worry (eg, too many people), but it seemed like
the right thing to do. We did not expect all the customers to
agree, and we did not expect all the customers to be equally
‘useful’ (in the sense of identifying features that would lead
to a great product for many customers).

But it seemed best to listen to them — at least the customers
who would take the time to participate.

We discussed the mechanics. We would teach them Scrum
and Agile (enough), and then do a ‘workshop’ where we
actually built out the Product Backlog and identified the real
releases as best we could on Day 0. We would then be honest
with them and say, “We expect it to change.”

What Happened

Mostly the right people actually showed up.

The training went well, and the workshop went very well.

²Level 1 planning and Level 2 planning are discussed in a later section.

The Story Begins 13

They did most of what is described below, and they had some
of the issues or questions indicated in the discussion.

Mark felt he wanted to make some changes to the Product
Backlog afterward. He felt every customer was not equal,
and so, in the workshop, some of the user stories were not
prioritized as he wanted (all customers were not equal, even
though we treated them that way in the workshop).

Overall, Mark was happy.

The team was happy.

The customers were happy. Even though they did not fully
agree with each other, they felt good about the transparency.
They understood how each company (each customer) was
different, and that trade-offs were necessary. They completely
understood that not every feature can be #1 (in fact, only one
can).

Overall, a lot of learning occurred and the stage had been set
for a successful effort.

What Happened Next?

This experience was a watershed for me.

Some months after the workshop with Mark, I spoke to
my friend Catherine Louis³. She said, “You need to add a
workshop to your courses.” I said, “No way. They can’t take
it.” She said, “You must. This is the kind of thing I did in my
old company, and it worked.” I said, “OK, let’s give it a try.”

I fully expected the trial (which was ARP) to prove that a third
day workshop was wrong, and that it would not work.

³Catherine Louis can be found on LinkedIn or at http://www.cll-group.com/

The Story Begins 14

In fact, it proved the opposite.

And it made me see that people need this concrete exercise in
applying many of the basic ideas of Scrum and Agile before
they can really ‘get’ Agile and Scrum. Attendees said this, and
continue to say this, to me in lots of different ways.

I have now been doing this workshop almost every week for
5 years. It works every time. I will not say that every ‘team’
(the 4 or 5 people at each table) does it equally well. But every
team (table) does it well enough. And it always works.

So, I want to share these ideas, values, principles and practices
with you. YMMV (YourMileageMay Vary), but by nowmany,
many people have found these ideas useful. I think there is a
good chance you, too, will find them useful.

By now, I have done the Agile Release Planning workshop
close to 200 times. Let’s assume on average 15 people in each
workshop. And virtually ‘every time’ it has worked. Maybe
five people out of the 3,000 have left the workshop feeling ‘this
won’t work for me.’ The more typical responses are: “Wow,
this is great.” “Now I see how to do this.” “This is better than
what we have done so far.” “I want to replace the current
Product Backlog with what we did today. [Often the ‘team’ in
the workshop included no one else from his company.]” “We
have to do this at my company.”

I also get the response: “Wow. This is great. I am not sure
I can get my company to do it.” So, we are talking about
some change. And I believe you can actually lead the change.
Perhaps I believemore that good change will happen than you
do. In any case, for now, how to get good change to happen
is not a major topic of this book.

My Approach —
Summary
The People

The people are most important.

Surprisingly, this idea is a surprise to many people.

Who are the right people for this work?

I expect this to be done by the Scrum Team (Product Owner,
ScrumMaster, Implementers) (\∼seven people in a team) and
the business stakeholders (\∼four people).

The Process

To call the things I describe below simply ‘process’ or process
steps is somewhat misleading, but let’s go with it.

Here’s what I think Agile Release Planning (ARP) should
comprise.

For a set of work for about five to seven months, most
individual teams should do this in about one day. It might
bleed into the next day, especially if you take long breaks.
The ARP will have good enough quality to then start the first
Sprint the next day.

My Approach — Summary 16

Again, we are not ‘done’ once we have the initial release
plan. We must do Release Plan Refactoring every Sprint. This
continuing adaptiveness of ARP is probably its most essential
aspect.

Perhaps the two most essential ideas behind that are:

• We don’t know everything up-front (by a goodmargin).
• Both good change and bad change will happen during
our efforts, and our planning must adapt to those
changes to mitigate the bad changes and to maximize
the value from the good changes (e.g., learning).

Again: I do not guarantee that release planning is needed in
all situations. If you just want to build a small Product Backlog
and start the first Sprint, this book is not saying that is wrong.
Still, I have done this approach now with many, many teams,
and it seems to have worked with all of them. My experience
is that everyone I have led through this process has liked it
after they did it, they thought it was worthwhile and they
actually did almost all of it.

Here’s the picture of ARP that I usually draw. (next page)

My Approach — Summary 17

Note: MMFS stands for MinimumMarketable Feature Set. See
“Software by Numbers” by Mark Denne and Jane Cleland-
Huang.

What dowe have? For those who can’t read this drawingwell:

Agile Release Planning

My Approach — Summary 18

People: Scrum Team (7) and Business Stakeholders (4)

Process:

Vision

Product Backlog

• Roles (5-7)
• User story workshop (50 stories)

Business Value

• Drivers (3-5)
• Priority Poker → BVP, Business Value points

Effort

• DOD, definition of done
• Planning Poker → Story Points (SP)

R= BVP/SP

Risks, Dependencies, Learning, MMFS, other

++++++++++++++++++++++++++++++++++

Order the Work

Scope-Date trade-off

Velocity = X (estimated)

“Communication Plan”

Fix It Plan

My Approach — Summary 19

OTHER

All of these short titles are explained below.

Release Plan Refactoring

After the initial ARP, we start doing Release Plan Refactoring
every Sprint. A typical pattern might be to do three Sprints
and then ‘release the product to the public.’ Nonetheless,
in every Sprint we assume the plan can still be improved,
and that doing so is useful compared to the cost of doing
it (relatively low). So, RPR every Sprint until the release is
complete.

The dumbest thing is not to learn. Surely we can learn at least
one thing each Sprint that can make the release plan a bit
better.

The purpose of RPR work is to learn and then change and
improve the plan. If we learn, we need to refactor our release
plan.

We certainly hope sometimes that things will not need to
change very much, at least not in a bad way. Remember also
that learning is good change. And we want to take advantage
of good change. So, for myriad reasons, things will change, at
least some.

(Of course you and your team are making every effort to learn
faster and to discover change as early as possible. That should
go without saying.)

Comments

As I said earlier, the real value in doing this is not the ‘crappy’
initial estimates that the team arrives at after the initial release
planning. Stated too simply: The real value is that everyone is
now ‘on the same page’ about what the elephant is. At least

My Approach — Summary 20

we are a whole lot more on the same page than we ever were
before, which is tremendously valuable.

If the team does really bad, or no, release planning, I think
it increases the chances that the stories will be too big. This
means that lots of stories just can’t get to ‘done, done’ in the
Sprint. So, in that and other ways, good release planning is
linked to having good Sprints! Now, the problem of bigger
stories can be fixed later, but other problems could also
arise. To avoid being stuck in a mess, try to do Scrum as
professionally as possible from the beginning.

My Approach - The
Details
Now I will describe how I typically have teams do this —
how I have a decent team work through initial Agile Release
Planning (ARP).

So, we will take the same ideas we just summarized and walk
you through how to execute each step.

Note: This book only describes ARP for one team. In a later
edition I may add notes about how to do this in a scaled
situation (multiple teams).

The People
Why bring so many people?

We have to get them all seeing the same elephant, as we say,
and they all are needed to have good knowledge creation on
this subject.

If they all come, it becomes 11 people. That is really more
than I like in a meeting (about seven people is much better),
but who can we not invite?

What will we accomplish?

1. They will all see the same elephant.
2. They will all be more motivated.
3. They will all share their tacit knowledge.

These three things are hugely valuable.

Vision
The first step is vision.

We define the vision, and make sure that all the attendees see
the same vision and agree with it — or at least start to align
with it.

Who: The full Scrum Team and the business stakeholders
should do this together. The Scrum Team includes of course:
the implementers, the ScrumMaster and the Product Owner.

The business stakeholders (BSHs) provide key input about
what the product should be. They are chickens; that is, they
are not be full-time members of the Scrum Team. But, they
will be key to success.

BSH is not a defined Scrum role — it is a concept that I use to
refer to a small set of people outside of the Scrum Team.

Often what I mean by BSH is different than what ‘business
stakeholder’ means at your firm now.

I usually think of the BSHs as being four people, but of course
the number can vary. If the Scrum Team is seven and the BSHs
are four, we already have 11 people in the release planning
meeting. At this size, it is starting to have the communication
problems of a big group, but who can we not invite? So, the
size is a trade-off between efficient communication and being
sure we have enough good inputs.

The BSHs may be customers or internal managers, or really
anyone who will participate enough (every time) and provide

Vision 24

valuable input. It is mainly the PO’s job, in my view, to make
sure these are the best possible people, given the specific
situation. Often the PO must seek help in selecting the BSHs,
or in getting better ones.

In my experience, the BSHs are never perfect representatives
of ‘the customers’ of the product. Sometimes the level of
imperfection is quite impressive. Often, once the imperfection
is identified and made visible, it can be corrected.

Typically the BSHs represent two main groups: (a) ‘the cus-
tomers,’ meaning usually or mostly the external and/or in-
ternal end-users, and (b) the firm, usually personified as the
widows and orphans who ultimately own the shares of the
firm.

What: By visionwemean a relatively short statement of what
the product will be, once completed. The vision includes what
it will be, whywe or the customers will be excited about it and
a few more scoping details.

The vision establishes the ‘north star’ of our direction — it
hints at what the business value is.

And it is like an elevator statement⁴ — something short that
you could explain in two minutes to your boss’s boss.

We particularly like Geoffrey Moore’s format, which comes
from his book, “Crossing the Chasm”:

• For (target customer)

• Who (statement of the need or opportunity)

• The (product name) is a (product category)

• That (key benefit, compelling reason to buy)

⁴http://en.wikipedia.org/wiki/Elevator_pitch

http://en.wikipedia.org/wiki/Elevator_pitch
http://en.wikipedia.org/wiki/Elevator_pitch

Vision 25

• Unlike (primary competitive alternative)

• Our product (statement of primary differentiation)

In addition to these nice words, we also strongly recommend
you find one or two key numbers to ground the vision.

The numbers make the vision more real — the words are
usually quite sweet, while the numbers ground the ideas in
some reality. For example, the numbers typically make the
product, in theminds of some of the attendees, either bigger or
smaller than some thought from the words only. The numbers
make the words more tangible.

Examples:

“We expect to make $3 million in the first year.”

“Widget production will go up about 125%.”

Whatever metric (or two) makes most sense.

Why:

• To clarify the direction of the product.

Yogi Berra: “You have to be very careful if you don’t know
where you’re going, because you might not get there.”

• To motivate all parties — this is quite important.
• To set a direction and a rough scope. (“This is about the
iPad 3, not the iPhone, nor any other iOS gadgets.”)

• To start to get everyone on one page. My experience
is that this is difficult. Why? My best guess is that
at this level of abstraction, it is easy to have different
understandings.

Vision 26

We will mitigate this last issue by quickly making it less
abstract by building the Product Backlog.

How: We find this typically takes roughly 20 minutes, often
less. Occasionally more, especially if the BSHs will not agree
on the vision.

We find it is useful to do 15-minute time boxes to check if
there is too much aimless or circular talk, and to check for
those talking too much and those talking too little.

We recommend that the ‘smart guys’ (those who think they
already know the vision) talk, and the ‘least informed’ (typ-
ically, one of the implementers, who usually is just learning
the vision) physically write the vision. This helps assure that
the ‘least informed’ learn it better.

Later, the PO, who may be better with words, may improve
the wording.

Remember that perhaps the most important goal is not to
have knowledge (in one person’s head), but to spread the
knowledge into the heads of all these people.

Ending: Usually the team forgets to identify a key metric or
two. Go back and do that.

Then, ask the whole team for ‘the thumb metric.’

Say to them: “If the thumb is pointing straight down, this
is the worst project you have ever been on. If the thumb is
pointing straight up, this is the best project. Half-way, this
is just an average, typical project around here. So, one-two-
three, show us your thumb.”

Then, the PO should lead a discussion of the results. Some-
times this means improving the vision statement. Some peo-
ple are by nature skeptical at this stage, and we just learn that.

Vision 27

Sometimes it is just a short discussion.

Note that this is a reminder that one of the purposes of the
vision exercise is to get them motivated, and we are learning
now how well this exercise did that.

Roles: The PO is leading the content. The ScrumMaster is
leading the facilitation. The SM checks the time boxes and
tries to assure that each person talks the right amount. The
PO is always assessing: Have we said the right things? Is the
group appropriately motivated?

Later: The war is not won or lost in the first hour of battle.
The vision is a starting point — hopefully a good start — but
some projects can start with a great vision and then still get
bogged down later. Some projects start with a clearer vision,
some with a less clear one.

The vision is typically improved later on, in any case. For
those who may be uncomfortable moving on, remind them
of this.

Product Backlog
After we complete the vision, we must develop the Product
Backlog.

There are two parts to this.

1. We must define the roles to use in the user stories.
2. We must write user stories. I call this second part a user

story workshop.

If your team prefers to use something else than user stories to
populate the Product Backlog (as the Product Backlog Items),
then the wording of this section would be changed a fair
amount, but I think most of the key ideas still apply. All of
the teams I work with have found good success with the user
story format.

Roles

Let’s break this down.

Assumption: We have a new team that is doing Agile-Scrum
for the first time.

Who: We want the whole Scrum Team (PO, SM and imple-
menters) and the BSHs.

Usually you want the three to five best business stakeholders
you can get. They are never perfect, but at least they are

Product Backlog 29

the best you can get. The Product Owner (PO) is usually the
main person driving which BSHs to bring in. Certainly the PO
should have significant influence over who the BSHs should
be.

The Product Owner is leading the content. The ScrumMaster
(SM) is leading the facilitation.

What: We want about five to seven roles. These are the roles
to go in the User Stories. (Not the ‘roles’ in the Scrum Team.)

How: Brainstorming to get five to seven roles is usually pretty
easy. Sometimes it takes more time. It depends on the team
and the situation. Typically five minutes, or maybe 10.

We mostly want different user roles (personas, actors), and
usually they are the end users of the system or product, either
external or internal. But more generally, we want any role
that would want some feature in the product, even if that role
does not directly use the product.

Please avoid a commonmisconception: These are not the roles
of the Scrum Team members.

Some teams might come up with 30 roles, while some might
come up with only two.Wewant to either synthesize or break
down until the number of roles gets closer to the five to seven
range. There’s something magic about that range, but not
worth dying for at this point. If they only have four roles,
things will probably still be OK.

Whatever they come up with for roles, it will probably work
the first time, but the roles will become better as they start
to get more practice with stories, and appreciate, tacitly, the
characteristics of a good role.

Product Backlog 30

User Story Workshop

By a user storyworkshop, we simplymean thatwe have the 11
people start to self-organize and create user stories. (For now,
a user story is a short sentence that explains one feature.) It is
a workshop in part because we do recommend that they have
a coach there ready to answer questions. Later, the SM can fill
that role.

The first time we ask them to do a user story workshop, they
may get scared. They may think this is going to take a long
time. So, we may need to calm them down.

One way to do this is to tell them how many (or how few)
stories we need. Often they think they will need hundreds of
stories and that this will take weeks.

For 6 months of work, we tell them we need about 50 stories.
And this may take about 30 to 45 minutes.

Here is the thought process:

It is typically best, the first time a team does Agile Release
Planning (ARP), to be working with about six months of work
for one team. As we said earlier, you will guess it is five to
seven months worth of work when you start. This is not too
little work (where they don’t learn enough), nor too much
work (where this initial planning starts to be too tedious for
some tastes).

I won’t explain all of the reasons, but that is enough work
without being too much work or too little. (Later, after they
are more experienced, they can handle ARP with more or less
work — or you may just have more or less work. So, later, it
is OK if the project is only three months or is bigger — say, 16
months.)

Product Backlog 31

If we have about six months of work, let’s do some math.

My rule of thumb is: In a good normal Sprint of two weeks,
it is best to have eight or more stories. Six months of work is
13 Sprints. 13 Sprints x eight stories = 104 stories. Now, those
104 stories are all small enough to fit in a Sprint. I call them
‘Sprint-sized stories.’ (Stories too big for a Sprint I call ’epics.’)

In the initial Agile Release Planning, we can be pretty happy
with somewhat less granularity than what we will need in
a Sprint. So, we divide 104 by two. That gives us about
50 stories, and they start to be at about the right level of
granularity. This is what experience shows. So, 50 stories
covering the same amount of work would be good (i.e., on
average each story (epic) is about twice as big as a Sprint-
sized story).

This level of granularity will give us a rough idea of what we
are shooting for now (i.e., 50 stories).

Clearly, we are not shooting for 500 stories, nor for five stories.
We are shooting for a manageable 50 stories. This is the key
idea. This knowledge enables some of them to relax; this
session building user stories will not last forever!

So, we only need about 50 stories that cover about six months
worth of work.

Experience shows they can often do a decent job in less than
30 minutes. Some groups will take a full 30 minutes. And
some will take 45 minutes. And the quality is good enough
for today. (They can also improve the quality of a few stories
later today.)

If we ask the group (the Scrum Team and BSHs) to produce
50 stories and they only produce 42, we are probably still at
a good level of granularity for initial release planning. But, if

Product Backlog 32

we only ask them for 42, then often they will only produce 32,
which is not enough granularity (the work is described at too
high a level).

If you already know the work is more or less than six months
(for one team), then you have to adjust this ballpark number
(adjust the ‘50’ up or down).

Typically at about this point, we give the participants markers
with ‘blunt’ points (eg, ‘fine point’ Sharpies) and index cards
or Post-It notes (4x4 inches or 4x6 inches). This enables
everyone to write and requires them to be succinct. When a
‘card’ (story) is written, anyone in the group can read it from
some reasonable distance.

Having the roles, the whole group starts to write stories. We
let them self-organize. We give them 15-minute time boxes.
At each 15-minute break, they “check in” and they inspect
progress and see if they want to adjust anything. Usually they
see that they want to write stories faster and worry less (e.g.,
edit less).

Sometimes the ScrumMaster has to say: “It is ok if the stories
are not perfect. Let’s just get something on the table we can
learn from.”

Typical productivity is: one person can write one story per
minute. But, given the group and with more people, they
slow down. So, it takes the group 30-45 minutes to produce 50
stories. No one will die if the group takes an hour (although
I do not recommend that). If your team is faster or slower it
is usually not a big deal, but that gives you a ballpark for the
timing.

I have seen a team of four people produce 54 pretty good
stories in 15 minutes. This was a small team, so they had an

Product Backlog 33

advantage.

When they feel finished, we recommend having the whole
team gather around all the stories (imagine the 50 Post-It
sheets on a wall). They should look at them and ask: What
needs improving the most?

Maybe a few aren’t worded well. Maybe a few stories need
the INVEST criteria a bit tighter. Maybe two team members
now identify three missing stories.

What were the INVEST criteria?

• Independent (we try to maximize this, but we never can
make all stories independent)

• Negotiable
• Valuable
• Estimable (clear enough that we feel effort can be
estimated)

• Sized Appropriately
• Testable

Note: I believe that Bill Wake at xp123.com⁵ deserves credit
for the INVEST criteria.

The INVEST criteria represent a way of thinking about the
stories, and a way to check to make them better.

It is sometimes useful to get more sophisticated than what we
have described above. I don’t like to do that the first time - I
prefer KISS (Keep It Stupid Simple). They need to have at least
one cycle of just doing the basics, probably several cycles.

⁵http://xp123.com/articles/

http://xp123.com/articles/
http://xp123.com/articles/

Product Backlog 34

We recommend that the PO answer questions and talk about
the product that he envisions. The PO should let others also
identify the specific stories. Particularly at first, the PO should
not try to be prolific — he should let others contribute.Writing
stories gets them more engaged. They become more creative
and, beingmore engaged, their motivation improves and their
learning improves. The PO can always add or modify later.

Is the Product Backlog perfect? Of course not. In waterfall and
in agile, we never have all the stories on Day 0. Never have,
never will. Like 12 lawyers at the bottom of the ocean, it’s a
good start.

Why?

Why do we have the whole Scrum Team and the business
stakeholders?

For several reasons:

1. We want all of them to see the same elephant.

We like the metaphor of the 6 Blind Men and the
Elephant.

2. We want the group to create knowledge together.

A bunch of things happen as they create knowledge.
One is that they all start to form a similarmental picture
(or pictures) of the product and the effort and of things
related to it (e.g., the architecture).

3. We want the team to develop motivation together.

Having been involved in the creation, the whole thing
becomes their ‘baby.’ This is far better motivation than
we get from ‘the mushroom treatment.’

Product Backlog 35

(The mushroom treatment is where the team is kept
in the dark and fed manure. This is great for growing
mushrooms, but not so great for growing teams.)

4. We want the whole group to share (most of) the tacit
knowledge they have with the rest of the group.

It turns out that everyone has some knowledge or ideas
to share, or at least some good questions. Almost ev-
eryone does share if you get them engaged and talking.

Yes, it is somewhat expensive to have everyone involved, but
the payback that comes during the project is very high — very
high — and the time to market is better.

Time Box: As indicated, I like to have a series of 15-minute
time boxes where the team checks in. Are we going too fast
or too slow? Anything we should change? Who is talking too
much, who too little?

Often the initial user stories can bewritten in 30 to 45minutes,
sometimes less, but it is not a big problem if it goes to 60
minutes. The main thing is, as the SM, if one member of the
team gets talking and worrying and nothing is getting done,
you can’t let the team just spin. Someone must fix it and get
the team productive again.

Also, in each team there are often some people whowant to go
faster and some people who want to go slower (often these are
’the perfectionists’). The SM must guide the team in deciding
the right speed to go. If anyone starts to get too uncomfortable
it can make the session less productive. So, sometimes the SM
must use those facilitation skills.

Common Issues: I like brainstorming rules. Meaning: Any-
one can create anything, and for this time box (say 15 min-
utes), no critique is allowed. Then a small editing or ‘fixing’

Product Backlog 36

time box where the team reviews and improves the stories.
Then maybe another ‘create anything’ time box, and so on.

I find creating one story and then criticizing each one is too
slow, and that process inhibits the team toomuch— especially
beginning teams.

Another issue is having only one person write the stories. If a
team reallywants to do this it is not terrible, but things usually
go faster if everyone writes, or at least multiple people write.

What about sharing the stories? This will happen for sure
later; everyone will read and discuss the stories when we talk
about Business Value and effort. Still, I think it is useful now if,
as a person writes a story, he or she shares it with the group
(says the words of the story, in the story format, out loud).
That way, no one writes the same story a second time.

Using the computer: I do not recommend using a computer
for this work, unless it is unavoidable.

I strongly recommend that the whole group be collocated, and
that the stories are written together in the same space. As
we said, probably on index cards or Post-It notes (4x6 in. or
4x4 in.). The knowledge creation and learning is much better
when everyone is engaged, and using physical things, rather
than distracted on various devices.

Top Down/Bottom Up: I find some people are top-down
thinkers and others are bottom-up thinkers. Both kinds are
useful. Let them be who they are, especially while they create.
Fairly obviously, top-down thinkers will tend to write epics
that need to be broken down further. Even at this point we can
often see that some epics are just too big, so we can identify
the bigger epics so that we can break them down enough to
get close to 50.

Product Backlog 37

Bottom-up thinkers will write stories that sometimes are too
small. (We might group some small stories into an ‘epic’ or
theme, if it is useful. Typically not.) The more typical problem
is that the small stories leave out some key features.

The User Story Format: I like the user story format, and I
encourage it.

The format is:

As a [role x]

I can [action y]

So that [explanation z].

The people especially tend to forget the “so that” clause. So,
I encourage them to include it. But, if they just can’t think
of the feature in a user story format, I say, “OK, just write
something as a PBI (Product Backlog item). Maybe later we
will convert that into user story format.”

Go easy on the beginners — they are just learning to ride the
bike.

Results: Usually the team ends up with 42 to 55 stories that
represent five to seven months of work. At this point, the
duration is simply a rough ‘ballpark’ estimate. (It is just a gut
feel.) Still, it is useful as a good start for the release planning.
A bit later in ARP we will improve that estimate.

These user stories (or PBIs) are just the right middle level
of ‘features’ for everyone to have a clear enough picture of
what the product will be. It embodies the vision. It makes
things concrete for people without getting mired in details.
Wonderful. And they can do this the first time.

Is it perfect? No. Will it ever be perfect? No. Did we spend
a reasonable amount of time to get a level of quality (in all

Product Backlog 38

aspects) that is useful? Yes!

Will we write more stories, as we discover them, later in re-
lease planning? Yes. It always happens! And will we add more
stories as we are doing the Sprints? Yes, always (although not
necessarily every Sprint).

Business Value
Nowwe move on to Business Value in Agile Release Planning
(ARP).

As Yogi Berra said: “You have to be very careful if you don’t
know where you’re going, because you might not get there.”

This quote might be funny, but more importantly, I think
it reflects our fundamental problem. Which is: How do we
identify what the customer really wants?

The work the group will do now on Business Value is one
answer.

When we did the vision, we directly or indirectly probably
talked about Business Value.

Nowwewant to talk about Business Value for each individual
PBI or user story.

Again, we want to have two actions within this section:

1. Identify the drivers of Business Value
2. Do Priority Poker

People: Again, to do this work, we want the whole Scrum
Team (PO, SM, implementers) and the BSHs (business stake-
holders). Again, the BSHs are the best people we can get to
attend release planning to represent the customers and the
firm well. We also expect these BSHs to be the the people
giving useful feedback in the Sprint Reviews.

Business Value 40

Business Drivers

It is my contention that the key thoughts and phrases or
concepts we want to use about Business Value vary by the
situation. They are not usually consistent from product to
product, or effort to effort. We need to make them specific to
the situation, and specific to the product, the customers and
the people involved.

The two biggest ideas about Business Value are fairly consis-
tent, at least usually. They are (a) satisfy the customers and
(b) maximize shareholder wealth.

We are now trying to make these BV ideas more concrete and
specific.

Business drivers may involve things like making money, risk,
customer satisfaction and many other things. In any given
occasion, BV could be very different things.

So, the whole group gets together and then discusses and
agrees on the top three to five business drivers that apply to
this specific set of work (the product), and the work repre-
sented by the existing Product Backlog (its PBIs). Sometimes
this will lead to the identification of some new stories (or
PBIs).

Priority Poker

Now that we have the three to five drivers, we can start
Priority Poker.

You may be familiar with Planning Poker, which is where we
use the Planning Poker(r) cards or Agile estimation Fibonacci

Business Value 41

cards to vote as a team on the relative Story Points of a to-
be-estimated story compared to the one Story Point on the
reference story.

Priority Poker is very similar to Planning Poker(r), except that
it is about Business Value, not effort. Also, we assume there
is no correlation between effort and value.

So, some similarities are:

• use a team of ‘experts’
• vote (and re-vote)
• use Fibonacci cards
• discuss assumptions
• share knowledge and ideas
• average the numbers after reaching some relative con-
sensus

• the resulting number (an integer) is comparative or
relative

• done fairly quickly
• somewhat imprecise for each individual story, but fairly
accurate over a set of stories

Some differences:

• a different set of voters than Planning Poker (our best
‘experts’ on Business Value)

• the reference story is the LARGEST Business Value
story rather than (usually) the SMALLEST effort story

• prefer the real Fibonacci sequence at the top end (with
effort the modified Fibonacci is not a bad idea)

• done in the presence of the implementers (so they can
learn)

Business Value 42

How we do it

So, first the top ‘experts’ (usually between four and seven
people) on Business Value huddle around the user stories (or
PBIs) and determine which single card (story) has the most
Business Value. This biggest BV story is arbitrarily given a
value of 100. (It is minor whether you use 90 or 100 or 144.
I’ve come to prefer 100.)

The Business Value ‘experts’ are typically the PO and the
BSHs, and maybe one of the implementers who has a lot of
experience with customers. Or for some other reason, knows
BV pretty well.

Let’s be honest — the so-called experts on Business Value are
not always experts. In fact, it might be said that no one is an
expert on Business Value, in part because it is a very complex
subject. So, when we say ‘experts,’ we mean the best people
you can find to do Priority Poker.

OK, now we have the reference story for Business Value.
Then the panel starts to vote on relative BVPs (Business Value
points) for all of the other user stories (or PBIs).

Here are the rules:

• pick a story randomly (we do not want to anchor the
panel by already putting stories in BV order)

• discuss the story
• identify drivers of BV that are relevant for that story
(but don’t get worried about exactly how big each
driver is)

• do not let anyone say (now) whether they think the BV
is high or low (it will become apparent as soon as they
vote)

Business Value 43

• ask each person to pick a Fibonacci card, but to not
reveal the vote to anyone (the card represents the
net size, in overall BV, of this story compared to the
reference story)

• once everyone has selected a card, 1-2-3, they all reveal
their cards simultaneously

• the persons with the highest and lowest cards discuss
why each was high or low. Others too can comment

• the panel does not have to agree with any of the
comments

• the panel re-votes until the results are within about
three consecutive Fibonacci cards of each other (say:
13, 21, 34)

• then they average the numbers, to the nearest integer

Example: In the second round, the vote is 21, 34, 34, 55. The
value for that story is 36.

Meaning: If the reference story is 100, and the vote averages
36, that means that they feel that the new story has 36% of
the Business Value of the reference story, considering all of
the different drivers of Business Value.

The other people listening (the non-voters) may ask questions
after a story has been BV pointed. The purpose for them being
there is to pick up the tacit knowledge about Business Value,
which stories are more important and why.

Final review: Once all cards have been assigned BVPs (Busi-
ness Value points), the experts then gather around all of the
cards on the wall and look for the ‘stupidest’ numbers. Often
in 50 cards they will identify three or four that seem stupid
now. Maybe this 30 card seems a lot bigger than the other
30s. Maybe that 70 seems like it should clearly be lower. The

Business Value 44

person identifying a ‘problem’ card can ask the panel to re-
vote. In general, we would expect them to re-vote on a few.
After all, now that they have discussed them all, they are
probably smarter now about Business Value than when they
started.

Timing:

Priority poker takes some time, but is worth it. Understanding
Business Value is very important.

Of course, one person in your group may talk too much. So,
the facilitator (the SM) must monitor that and address it.

We find a time period of 45 minutes to 75 minutes is usually
quite sufficient for 50 cards. But again, if the discussion is
deemed valuable by most of the participants, maybe going a
bit longer is useful.

Do check-ins with the Team every 15 minutes. Assess the
progress, andmakeminor adjustments. Typically, somemem-
bers are talking too much, and some too little. Make the
appropriate adjustments.

Be careful if anyone starts to feel ‘we are wasting too much
time here.’ At least try to help them see the value, or perhaps
try to make the rest of the group go faster. The SM must
balance between the people who feel we are going too quickly,
and those who feel we are going too slowly.

Sometimes one of the voters will be upset that the BVPs are
‘wrong.’ One suspects it may be the ego of that voter, but
possibly that voter may be right. Remind him or her that with
new evidence, we can re-vote the BVPs at any time.

Comments:

I personally feel that BVPs are best when they represent how

Business Value 45

much an end user will get excited or happy. Remember that
wewill take care of dependencies and ‘essential’ features (that
may be un-exciting) by another method later.

When we break down an epic, we do not assume all ‘child’
stories should have an equal BV number.

For example, we may have to do five steps in a business
process, but only Steps 2 and 5 (when automated) are exciting
to the users. The others are just chores thatmust happen. Steps
2 and 5, when we deliver them to the business and deliver
them well, that’s when the big smiles come out — or that’s
when the big money is made. So, we don’t say that all five
steps have equal value; we say that Steps 2 and 5 are big and
the other steps are smaller in BV terms.

If an epic is worth 100 BVP, does that mean that when it is
broken into five stories that each story is worth 20 BVP?No; as
we just said, we don’t assume that. In fact, along with Pareto,
we assume that there are ‘more vital’ parts of the 100 story,
as well as less vital parts. In the simplest world, one of the
smaller stories would be worth 80 BVP and the other four
stories would total 20 BVP together (the 80-20 rule).

Sometimes, perhaps usually, when we break down an epic,
we find that the total Business Value of the child cards is not
equal to the BVP of the parent. This is normal. By breaking it
down, we become smarter.

Often as we do Priority Poker, new stories are identified, or a
few existing stories are deemed so big, that theymust be sliced
and diced into smaller stories immediately. This is normal.

Sometimes an expert may feel he does not know how to vote
on a specific story. He must take his best guess anyway, learn
from how the others vote and learn later from how customers

Business Value 46

react when they get that feature.

Averaging:Apparently there aremanywho have been taught
Planning Poker and told to force the team to consensus on
one Fibonacci card. This is incorrect for Planning Poker. The
research shows that averaging is more accurate and a bit
faster, and the same applies to Priority Poker.

Accuracy:

Are the BVPs on each and every story perfectly accurate? No!

Have we learned a lot more about our different ideas about
Business Value and shared that throughout the group? Yes!

Did the numbers help? Yes!

Can we change the BVPs later, once we become smarter? Of
course, by team vote.

Will we change some? I absolutely expect it. You will want
to get smarter and smarter about Business Value in multiple
ways. This should in part be reflected in changes to the BV
points.

Results/Outcomes: One clear result is that we have a BVP
number on every PBI or user story. This is remarkable, and
no one in the group thinks the numbers totally suck, although
individuals may disagree about some specific BVP numbers.

Note: As we said earlier, if the panel feels some of the BVPs
are ‘wrong,’ they can re-vote them at any time.

More importantly, the whole team has shared a bunch of
ideas about how the BV is distributed cross the features. Every
feature is not equal — this is important learning.

Typically new stories are identified, and typically the MMFS
(minimum marketable feature set) is starting to emerge.

Business Value 47

Often, differences in views about Business Value between the
different BSHs are starting to get resolved without the PO
having to use political capital to resolve it. This is often a huge
win for the PO.

But the main thing, to me, is that the whole group starts to
share relatively specific tacit knowledge about each story —
specific down to the user story — not hand waving up at the
higher vision level. They share some relative specifics about
what the story (feature) really is (and why it is), and about
the Business Value of that story in context.

Doing the BVPs changes motivation.

And it changes the behavior later.

It changes these for the panel as well as for the other Scrum
Team members who are listening. The business guys start to
respect that the geeks understand them a little. The geeks now
understand better why business-side work is so hard.

Another important value in doing the BVPs is getting closer,
and will be revealed soon. Just a few more steps…

Effort
Now we move on to effort in release planning.

What we want to do is estimate the relative effort of each user
story that we have so far.

So, imagine that we have 50 user stories representing roughly
(based on gut feel only, at this point) about 6 months worth
of effort (ballpark, 5 to 7 months).

Now we have to do two things:

• Establish a Definition of Done for the team.
• Do Planning Poker, which gives us a “Story Point“
estimate (number) for each user story.

Definition of Done

[Some of you may be wondering: What is the difference
between the acceptance criteria for each story and the DOD?
If so, please check the Glossary.]

Each Team typically has one DOD, that defines when a story
is ‘done, done’ in a Sprint (then it is considered ‘complete’ or
finished in the sprint). When a story is done, then the Team
earns the story points toward their velocity for the sprint.

Now, how to create a DOD and what could one look like?

Effort 49

Borrowing from Taiichi Ohno⁶, I suggest we do the DOD
differently than many people do.

What others do is a list that describes what ‘done, done’
means once we get there.

Maybe they say:

• Requirements described
• Coded
• Unit tested
• Basic documentation written and reviewed
• Functionally tested
• Regression tested (small test)
• No bugs (all identified bugs fixed)
• Product Owner review (any issues fixed)
• No increased technical debt
• Promoted to the QA2 Server

What I would prefer is greater clarity about how we got to
this state.

As one benefit, this often reveals that ‘no increased technical
debt’ is very difficult to actually do. (Don’t get me wrong; I
am strongly in favor of minimizing technical debt. I just want
us to be honest that that goal is not easy to achieve.)

What Taiichi Ohno proposed is that we ask the workers to
write down the process that they currently use.

Once the workers do that, they themselves can see that it has
weaknesses, and once the process is more visible, then every-
one can help improve it. Specifically, the workers themselves

⁶http://en.wikipedia.org/wiki/Taiichi_Ohno

http://en.wikipedia.org/wiki/Taiichi_Ohno
http://en.wikipedia.org/wiki/Taiichi_Ohno

Effort 50

will improve it, and they start to ‘own’ the process. Thismakes
for better motivation and better results.

Some in Agile are concerned that, by writing down the
process, we have locked the process in stone. And thus, we
treat people like machines.

But this is actually the opposite of what we are doing. We are
making the process visible so that it can be improved. So that
it can be changed, and not so it will remain the same.

Bymaking the process visible, we enable anyone who sees the
process to have a somewhat educated opinion about it.

If the team is not strong enough, then a ‘bad’ manager could
try to force them into his process. If you have aweak team and
a bad manager, this is a real concern, but this seems unduly
negative in the general case.

The process describes how we get a typical story or PBI
to ‘done, done.’ The process should apply to most stories,
although probably not to all. The DOD does not apply to
special kinds of stories or PBIs (e.g., preparing a specific
document if one must be done as a separate piece of work).

Let’s make our suggestion more concrete in this picture. (next
page)

Effort 51

So, before or during the Sprint Planning Meeting, the team
can do many things to “get the stories ‘ready, ready.’” The
team makes visible what these things will be in that list.

Then they have the Sprint Planning Meeting.

Then the question is: What kind of process are we as a team

Effort 52

going to agree on to get one normal story (story 37 as an
example) from here to ‘done, done’ during the Sprint?

The team agrees on its own process. The first step might be a
(presumably very short) conversation among (in my example)
three people about that specific story: The PO, the coder and
the tester.

Then the team defines other steps in a reasonable amount of
detail.

As the last step (or at least a latter step), I recommend they
include ‘PO Review.’ This means that the PO reviews the story
and gives a thumbs up or thumbs down. If there are problems,
then the team has to fix them. I call those problems “bugs”
(in quotes), but they are not bugs in the usual sense. They
are things that need to be done to get the story to where the
customers will like it (in the opinion of the PO).

In any case, whatever they agree to as a team, that’s the
Definition of Done. There may be some tough conversation
to come to agreement.

Purpose: One purpose of expressing the DOD this way is to
make clear what is being done in the Sprint, and what is being
done before and after the Sprint.

What we estimate (in the SPs) is what is done in the Sprint
only. The work before or after must be managed another way
(possibly with another card).

Anything that is done after the Sprint — to make that story
into something that can go in the live production — all that
work is listed as well, below the line. Meaning: It is work after
the Sprint, and hence not in the Story Pointing. That work
represents all the bad news getting better with age, but we

Effort 53

have to accept that we can’t always get to “live, in production,
in use by the customer” within the Sprint. At least at first.

We think this approach to the DOD gives much more clarity
or transparency.

It starts the team on the road to becoming more professional.
It enables the team to improve their own process. This is key.
They agree to one process and make it visible. This is not to
ossify the process, but rather to make it easier to change and
improve. And to enable the team to know, better, on a more
consistent basis, how far ‘done’ they are— howmuch progress
they have made.

Planning Poker

Now we come to the point of describing Planning Poker. This
is a continuation of the discussion of effort.

Planning Poker has been described before in the Agile-sphere,
so this will be brief. It is described at greater length many
other places.

Some basic characteristics:

From the people we have, we select the five best people to
vote on effort for this work. (About five, maybe three to
seven.) In practice this means the implementers in the team.
Often, to call them individually ‘experts’ in estimating effort
is a stretch. The idea is that they are the people who will do
the work, and probably understand their own strengths and
weaknesses better than anyone else.

So, for motivational and other reasons they must do the
estimating.

Effort 54

In practice, they may be bad at estimating at first. But with
maybe a bit of time, they typically are the best at estimating
the effort for the work of their team.

Usually the business stakeholders (as I call them) will not stay
around for this work. This is OK; not ideal, but OK. We will
bring the BSHs back in later. You have to decide when later
is.

We use the Agile estimation cards with the Fibonacci scale.

The approach is wide-band delphi. Delphi means we use the
best ‘experts’ we can find. Wide-band means that we allow
the experts to talk and learn from each other. This bears strong
resemblance to the knowledge creation ideas from Takeuchi
and Nonaka.

The basic technique: We want about five ‘experts’ on effort
from the team.

The experts are the people in the team who will be building
the product. This affects motivation. This affects their knowl-
edge. This will affect their later behavior. We try hard to get
all of them, so that none of them feels left out.

The Product Owner is not one of the voters, because the PO
does not know how to do ‘real work,’ or because the PO will
not do any real work in the team this time, or because the
PO is biased (or perceived to be biased). (One can imagine an
exception to this rule.)

But the PO is there.

The PO has to make sure that the team is understanding
each story correctly. If there are questions about the story,
the PO must make the final decisions. Typically the PO is
a business person, and in any case is representing the firm

Effort 55

and the customers. So, when those kinds of questions come
up, the PO must be there to give the team the best possible
assumptions to work with.

The ScrumMaster is there to facilitate the meeting or the
work (e.g., to try to get the quiet ones to talk more and the
talkative ones to talk less). The SM helps them use the time
box effectively. The SM makes the estimators get all the cards
estimated in some reasonable time-box. (One story is on each
card.)

In this discussion, we will assume all the PBIs are in the user
story format, so we will call them stories.

The experts must now choose the reference story.

Imagine that the team has 50 stories in the Product Backlog,
covering about 6 months worth of work — the experts choose
from that set the smallest effort story.

Note: The reference story should not be too small. Ideally it
is about one ideal person day (8-10 ideal hours, after adding
together all of the ideal hours from all of the required skill
sets). Someone knowledgeable outside the Team should check
that the story is about the right size. The SM might arrange
this, but the SM should not tell anyone exactly how that
person determined that the reference story was ’not too small,
not too big, just right’.

Do not let the voters start thinking in units of time (days,
hours). Still, if the story is too big or too small, it starts to
distort the voting, in my experience.

The reference story is arbitrarily given a one — this means it
has an effort value of one Story Point. (Doing things this way
makes the numbers become somewhat more useful…trust
me.)

Effort 56

Note: An earlier section talked about how the teammust have
a strong Definition of Done (DOD). The DOD should make
clear what things are being done in the Sprint to get the story
‘done, done’ as we often say. So, it is the effort of the things
in the DOD during the Sprint that we are estimating.

OK, now the team estimates the relative size of all the other
stories in comparison to this reference story.

It happens in this way:

Select the highest value story. Compare it to the reference
story (the one SP story).

Discuss it briefly to assure everyone understands the new
story the same way. Perhaps the PO describes the story.
Perhaps the experts ask the PO questions.

No one should say anything that suggests whether the new
story is big or small. We are only discussing ‘what is it’ and
‘what is involved in building it’.

Someone asks, “Any more questions?”

If the answer is no, then each expert privately selects an
estimation card that best represents his feeling of how much
bigger the new story is in comparison to the reference story.
For example, if about seven times bigger, the choice is be-
tween a 5-card and an 8-card. Likely, the 8-card will be
chosen.

If all experts are within three consecutive cards of each other
(e.g., all have either a 5, 8 or 13), then average the numbers.
Example: 5, 5, 5, 8, 13 averages to 7. The average is rounded
to the nearest integer. The average does not have to be a
Fibonacci number.

If the experts’ votes are more dispersed (e.g., 3, 5, 8, 13, 20),

Effort 57

then the people who voted the two extremes talk (mostly).
In this example, the person with the 3 and the person with
the 20 both talk about their assumptions or reasons, etc. If
the assumptions are business-related, then the PO can decide
which assumption is correct or more correct.

With the new information, the experts can do a new round of
voting. Again, they vote privately, and reveal their votes all
at once.

Voting and discussing can go on a couple of rounds. The final
answer for a card is the average after the experts get within
three consecutive cards of each other (e.g., all votes are 2, 3 or
5).

If, after X number of rounds, the experts have not reached
some degree of consensus (within three consecutive cards),
then the team should just take the average. Each team can
decide how big X should be. My guess is three or four rounds.

Once the number is decided, it is written on the card (story) in
such a way that everyone knows that it represents the Story
Points. Color-coding and placement on the card usually make
that clear. For example, in the lower right corner in red ink.

Comments: The discussion is actually the most valuable
thing. The numbers drive a better conversation about more
important issues.

Sometimes important assumptions are identified. In that case,
each assumption should probably be recorded (perhaps on the
back of the card). Later, if we discover that the assumption is
incorrect, we can refactor the Story Points for the related story
or stories.

Multiple cards can have the same number of Story Points (e.g.,
two cards can have 23 Story Points).

Effort 58

Sometimes the experts will want to address certain general
issues. The issues might be architecture or design related. This
is where the SM has to use good judgment. Typically you
should let them discuss for awhile, but not too long. Maybe
make one or two drawings. Then get back to Planning Poker.
Sometimes one or two people on the team want to discuss
these issues too long. In this case, the SM must use good
judgment and get the experts back to Planning Poker.

You will hear of people suggesting that the experts must agree
on one Fibonacci number (e.g., 8) for a given story. This is
not recommended. First, it gives a strong incentive for people
to too quickly start to shade their numbers rather than vote
what they really think. They find that George, the senior guy,
is stubborn, and to avoid conflict and to keep things going
they decide, almost subconsciously, to start voting as closely
to what George says as fast as they can.

The research also shows that the average is more likely
to be the more correct estimate, and it actually takes less
time to reach that number, usually. (OK, yes, the division is
annoying.)

Often one or two new stories are identified while we are doing
Planning Poker. This is normal. Occasionally, the new stories
turn out to be very important.

At the end

It usually takes 50 to 75 minutes to estimate 50 cards decently
— sometimes a bit less.

Don’t let them take a lot longer in this first pass. They will
be able to revise the estimates later, any time they think they
have more information. Many of the stories will be broken
down later, and then re-estimated. And always for each story

Effort 59

we will collect more information later, and that could cause a
re-estmate.

The first few story cards take longer, then things speed up on
average.

Sometimes, after the panel is well into the process, they will
get stuck on one or two cards. As long as it is only a few, this
is reasonable and not a problem.

Once all story cards have been estimated (for effort), all of
the cards should be put on the wall, and then the whole team
should gather around to see if they can identify one or a few
badly estimated cards. By ‘badly estimated’ we mean that
they just feel that the SPs on these few story cards are notably
inconsistent compared to the other cards.

It is very common that two or three stories will need to be
re-estimated, in the team’s opinion. Often, these are cards
that were estimated early on, when the panel was dumber.
This is fine that they re-estimate them — good even — and
normal. They now, as a team, are much smarter than when
they started Planning Poker.

The R Factor
Now that we have a number for Business Value and a number
for effort, we can calculate the R factor, or ratio.

One or two people in the team calculate the R ratio for each
story — R = BVP / SP — and they write the number on the
story card.

The R should mainly be expressed as an integer, i.e., rounded
to the nearest integer. If the integer is 0 or 1 or maybe 2, then
use one decimal place (e.g., 1.4 or 0.8).

Depending on which words you prefer, the R factor repre-
sents:

• return on investment
• bang for the buck
• cost-benefit analysis, or
• low hanging fruit

We next suggest that the group organize the story cards (the
Product Backlog) based on the R number — highest R first,
lowest R last.

The PO’s main goal is to maximize the Business Value deliv-
ered from the team to the Customer (or the Firm, depending
on your philosophy). Ceteris Paribus (other things equal), this
is how the work should be done to achieve that goal.

Now ask the group: What do you think? Is this the right way
to do the work?

The R Factor 61

Usually they say: “Well, it is close, a good start, but we need
to make some changes.” Which is always the right answer in
my experience.

What ideas do we use to re-order the work? More on that in
the next section.

This R factor is a huge improvement. We never had a way
before to compare benefits to costs. The R factor is the best
guess by our best ‘experts.’ In business, that’s what we act on
until we have a better guess.

Is return on investment important? Absolutely!

Were we ever able to see it usefully in our projects? No, not
the way we did things in the past.

Is the R factor perfect? Of course not. Both the BVP and the
SP numbers are estimated by humans. But, anytime they can
see that the numbers are wrong, they can re-estimate them
and make them better. So, the R factor represents our best
understanding at any moment — our best guess — therefore,
a huge improvement.

And we will use the current information to enable ourselves
to actively get smarter. Only a truly stupid team will not be
able to get smarter.

Risks, Dependencies,
Learning, MMFS, Other
Nowwe come to the point of (re)ordering the Product Backlog.
It was just (see above) ordered based on R factor alone. This
is never (in my experience) the final or best ordering of the
work.

You will recall that the Product Owner’s main goal is to
maximize the Business Value from the Team. In some time
period (shorter or longer, as makes best business sense in your
specific situation), and deliver that to the customer.

So, in theory the R factor (see the previous section) should
be the way to organize the Product Backlog, ceteris paribus
(other things equal).

But of course, other things are never exactly equal.

So, here we use common sense — that most uncommon
element — and we re-order the work based on these factors:
Risks, dependencies, learning,MMFS and other factors. (Each
of these factors is discussed below. MMFS stands for Mini-
mum Marketable Feature Set.)

Note: James Coplien has an excellent article titled “It’s Or-
dered —Not Prioritized!” that discusses ordering more. It is
on ScrumAlliance.org⁷. Coplien also relates this to patterns at
ScrumPLOP.org⁸. I highly recommend the patterns at Scrum-

⁷https://www.scrumalliance.org/community/articles/2011/august/it%E2%80%99s-
ordered-%E2%80%94-not-prioritized!

⁸http://www.scrumplop.org/

https://www.scrumalliance.org/community/articles/2011/august/it%E2%80%99s-ordered-%E2%80%94-not-prioritized!
http://www.scrumplop.org/
https://www.scrumalliance.org/community/articles/2011/august/it%E2%80%99s-ordered-%E2%80%94-not-prioritized!
https://www.scrumalliance.org/community/articles/2011/august/it%E2%80%99s-ordered-%E2%80%94-not-prioritized!
http://www.scrumplop.org/

Risks, Dependencies, Learning, MMFS, Other 63

PLOP.

How should we do the re-ordering?

We recommend that anyone in the group can propose to
move a user story card earlier or later, and he or she must
explain (justify) the change with the team (especially the
PO) and get reasonable consensus. Anyone can say ‘I don’t
agree because….’ The PO has final decision authority on the
ordering.

How long should this take?

Normally this does not take very long. Again, six months of
work for one team is typically expressed as about 50 user
stories. So, re-ordering 50 user stories, where most do not
move, does not take long. It might be done in five minutes,
or it might take 20 minutes. The longer time might be needed
only because explaining why a story is being moved, or
debating the merits of that, might take some time.

A very typical situation is that five cards move, and it takes
five to 10 minutes. When they take longer than 30 minutes, it
is likely that the SM should have been reining them in.

So, let’s discuss each factor in turn.

Risks. There are potentially many types of risk. Business risk
is often a big one. For example, we need to get a feature out
before a competitor, or we have a weak understanding of the
specific detailed features needed in area X. Technology risk is
another common factor. We are about to use new technology
and we are not sure how it will work. There are also other
types of risk. In Scrum, we tend to want to attack risk early
by doing one or more stories in that area. For example, to see
if the risk is just a worry, or a real roadblock.

Risks, Dependencies, Learning, MMFS, Other 64

Dependencies. Again, these can be of several types. In the
past, we often organized the work mainly by technical de-
pendencies. Since the goal (we now recognize) is to maximize
Business Value, we sometimes must sacrifice the efficiency
of the team to a degree. But if technical dependencies will
seriously reduce the efficiency of the team, then we must
deal with that. There can be business dependencies, as well.
It makes more sense to develop Step 1 in a process before Step
2, for example.

Learning. We are knowledge workers, and knowledge work-
ers learn. It can be useful to learn certain things earlier, and
sometimes we can organize the work to make that happen.
For example, we need to learn what the customers really
want. We need to learn some technical things to becomemore
effective. If we learn certain things earlier, it can give us a
great advantage.

MMFS. MinimumMarketable Feature Set. This phrase is from
“Software By Numbers” by Mark Denne and Jane Cleland-
Huang. The idea is that we work hard to discover some
minimal set of features that must be put together before a
customer can realize the value of the whole set. Sometimes
this minimum is quite small, quite small indeed. In other
circumstances it is much larger. In general, too many of
us (producers and customers) have been brainwashed into
believing the 100%-100% rule, so that we think the MMFS is
much larger than it really is.

In general, Pareto’s 80-20 rules is closer to what we should
do. We should do 20% of the work to get 80% of the business
value.

In any case, low value features sometimes must be moved up
to add the ‘missing something’ to make the next release truly

Risks, Dependencies, Learning, MMFS, Other 65

usable — to get to the MMFS.

Other. This is a catchall for all the other reasons we have to
change the order of the work (the user stories).

My favorite example is this: A committee is going to meet in
three weeks to decide on the funding for our project. George is
on the committee. In our opinion as PO and in the opinion of
everyone else on the team, George is much too excited about
user story 87, which currently would not be built until the
second release. But, George is on the committee and user story
87 is only four Story Points (our Velocity is 24). So, we ask the
team to go ahead and get the story done in the next Sprint so
that George is happy, and Georgewill therefore give a positive
vote to funding the project. Not rational, not ‘the right thing
to do,’ but sometimes you have to deal with real people and
irrational things have to happen.

In our experience, risks and learning should be used more
often to re-order the Product Backlog and dependencies less
often. But, in any case, using the R factor solely is almost
never the right answer.

Comments :

We recommend that the Product Backlog first (already) be
ordered by the R factor.

We recommend that the whole team be there (PO, SM and
implementers) and the business stakeholders.

As suggested earlier, anyone in the group can start to suggest
re-ordering the Product Backlog based on any of the ideas
above (Risks, Dependencies, etc.). Any move has to be ex-
plained to the whole group. If there are disagreements, the
PO makes the final decision.

Risks, Dependencies, Learning, MMFS, Other 66

Again, let me emphasize that sharing (tacit) knowledge with
the whole team is at least as important as any other outcome
we are trying to achieve, so doing this without the team is not
recommended.

Completing the Plan
As discussed in the previous section, the user stories are now
ordered.

Now we must complete the release plan.

So, we must make the trade-off between scope and date.

There are three ways to do this:

1. Fixed release date: We will release every X months or
Y Sprints.

Some teams or firms prefer to have a fixed release date. It
makes things simple. It makes managers and others realize
that we will release. The only question is exactly what will be
in the release.

1. Fixed scope.

We will release when all of the scope is (all stories or PBIs in
that scope are) completed.

1. Trade-off.

We understand our Velocity and go down the Product Backlog
one Sprint at a time, trying to see (a) do we have enough
features and (b) can we release as early as possible. And

Completing the Plan 68

we speak to ourselves: “OK, two Sprints, how many features
are done? OK, three Sprints, are enough features now done?
No! OK, four Sprints, the customers would really like to see
another release soon, the market needs it now, but do we have
enough? OK, five Sprints, I think we now have enough. Let’s
shoot for that.” It is that kind of trade-off.

Any of these three methods eventually require that we know
our Velocity. Depending upon your preferred method, you
might argue that estimating Velocity should come first.

Estimating Velocity

With an existing team, youmight already know theirVelocity.
With a new team, you must guess.

Here is the calculated ‘guess’ for a new team.

It is a fancy calculation, and you can make a bit more
elaborate. Nonetheless, it remains a SWAG⁹ (you can google
that). It seems to give a better guess, on average, than other
ways of guessing.

Imagine the team has six implementers (people who do ‘the
real work’).

Imagine the team will do 2-week Sprints.

Let’s assume the focus factor is 60%.

What does ‘focus factor’ mean? It means, out of an 8-hour
day, roughly 60% of the minutes are usable for the project. The
other minutes are used talking about the ball game yesterday,
taking breaks, eating lunch, getting interrupted, answering

⁹https://en.wikipedia.org/wiki/Scientific_wild-ass_guess

https://en.wikipedia.org/wiki/Scientific_wild-ass_guess
https://en.wikipedia.org/wiki/Scientific_wild-ass_guess

Completing the Plan 69

questions, reading emails, going to company meetings, filling
out important company forms, etc. Maybe some work, maybe
even very useful work, but not work on this project.

Lastly, for the one Story Point reference story (for effort),
howmany ideal person days would it take? The team huddles
around that story and reaches a decision. Imagine the number
is 1 SP = 1.25 ideal days. The ratio could be anything (e.g., 1 :
1 or 1 : 0.5 or 1 : 2, etc.).

Calculation for Sprint 1:

2 weeks = 10 business days

6 people x 10 business days = 60 days

60 days x 60% = 36 ideal days

36 ideal days x (1 - 40%) = 21.6 ideal days (See below.)

21.6 ideal days / 1.25 (ratio) = 17.3 Story Points for the first
Sprint

We subtract the 40% as a start-up ‘cost’ for the first Sprint.

The 40% is based on experience and includes these factors
mainly:

• the team is learning Scrum
• the team is “Forming, Storming, Norming, Performing”
• the team always wants to over-estimate what they can
do in a Sprint

For the second Sprint, we recommend you subtract a 20%
start-up cost. For the third Sprint, we recommend you sub-
tract nothing.

Completing the Plan 70

You may find that these rule-of-thumb numbers need to be
adjusted for your situation. For example, perhaps your team
members all know Scrum, but the factors seem to work for
most teams that are starting up.

The calculations for the next two Sprints:

Sprint 2:

36 ideal days x (1 - 20%) = 28.8 ideal days

28.8 ideal days / 1.25 (ratio) = 23.0 Story Points for second
Sprint

Sprint 3:

36 ideal days x (1 - 0%) = 36 ideal days

36 ideal days / 1.25 (ratio) = 28.8 Story Points for third Sprint

Typically we would round these to: 17, 23, and maybe 29 story
points for the first three sprints..

The velocity for the fourth Sprint is assumed to be the same
as the third Sprint.

Finishing the Plan

Laying out the work in Sprints

The group now lays out the work in Sprints. These 4 stories
for Sprint 1. We can do these 3 stories in Sprint 2. And so on…

You are ‘buying’ stories (story points) with the expected
velocity of each sprint.

Then you decide how many sprints for the first release.

I find a typical situation is a first release in 3 or 4 sprints. But
it can of course be more or less.

Completing the Plan 71

Number of Releases

I tend to put pressure on new Product Owners to release
earlier and release more often.

It is remarkable how important speedy delivery of something
is to the customer, and is to the business, in most situations.

I notice that most POs are too mentally tied to the concept of
the 100%-100% rule. (We must do all the work before we can
get any of the value, and that nothing can be released until
everything is done.) This is almost always wrong. Hence, I
always ask for an earlier release.

The POs usually say they understand the 80-20 rule, but
in doing the work they tend to execute much closer to the
100%-100% rule. There are many reasons for this. (This topic,
important as it is, is beyond the scope of this book).

Communicating the Plan

Once the PO and team agree on the scope and date, we then
have to talk about the ‘communications plan’ as I call it. It
covers the Who, What, When, How, Where of communicat-
ing.

First, the communication plan is howwe will discuss with the
right people everthing that they need to know. And the main
topics are the obvious ones, often phrased as scope, date, and
budget.

The communications plan is an on-going approach to ex-
plaining how the team will deliver on X date and, despite
the inevitable changes later, will be perceived as winners (we

Completing the Plan 72

hope). It includes expectations management over some span
of time.

Also, if the team works with a manager who truly under-
stands adaptive planning (meaning that the current plan will
be revised and improved every Sprint — that this initial plan
is only the first guess at the plan), then tell that manager the
truth.

The team talks about: Here’s what we guess, this is what we
are worried about, this is our feeling about how it is likely to
change, and then we talk about any contradictory feelings we
may have.

Often enough some keymanagers do not understand adaptive
planning. These ‘tough’ managers (or customers) want you to
give a fixed date on Day 0, and then deliver to that date.

In that case, you are stuck in a hard place. So, we have to do
what we used to do in waterfall — add some ‘contingency’
(padding, buffer, etc.) to the date. This is to account for all the
change that we know from experience will always happen
later. It accounts also for problems, for people time being
‘stolen’ from us, for errors in the estimates, for new stories
that will be identified later, etc.

It is difficult to guess how much buffer to add. We have no
additional magic.

But, we do strongly suggest that you protect yourself and your
team. Do not get them in a Death March trying to meet an
impossible date. More about this later.

Now we discuss how the date will be communicated. (Almost
always, the key issue is the date. The other two classic parts
are ‘the scope’ (which features will be delivered) and the
budget.)

Completing the Plan 73

The usual best thing to do is communicate nothing today or
tomorrow, but rather to improve the plan over a few weeks
or a few sprints, and then start communicating.

You have to start setting expectations that the date will
change if other things change (substantially), and that the
other things are likely to change substantially. This is not one
conversation by the PO with the ‘project sponsor,’ but a series
of conversations by the PO and the team with all the different
groups of people who care.

The conversations span some time — from now until some
time close to the delivery date. We want the people (e.g.,
managers and customers) over time to start to see and feel
the power of adaptive planning.

For some of you, the issue is not so much “the communica-
tions plan,” but, “What do we put in the contract?” A full
discussion of how to use Agile Release Planning to address
contract issues is beyond the scope of this book. Still, we
can say that in our experience, this approach offers two
major advantages for contract estimates compared to our
prior approaches. One, it is done more quickly (in one or two
days). Two, the quality is slightly higher than how we used
to do it. Even though this is the first time the team has ever
done it this way. And after the team gets more experienced
with this approach, the quality (e.g., the relative accuracy of
the date) is even better. But, honestly, it is still aDay 0 SWAG.
You still must add a significant ‘contingency,’ and it is risky.

I am not particular how you formalize the communications
plan (you may write it down), but I do strongly advise that
the plan be done with the whole team and with the BSHs.

In any case, I call all of this work the ‘communications plan,’
even though it is not about a plan per se.

Completing the Plan 74

The Fix-It Plan

Either before or after we do the communications plan, we also
must identify a ‘fix-it plan.’

The fix-it plan is the list of the top three to five things we
want to do to improve the release plan that we currently have
— the top three to five areas of focus for improvement.

Usually, one is: “We need to know the team Velocity more
accurately.”

Typically, one is: “Gosh, I knowwe are missing some features,
some stories.” So, the question becomes, how do we discover
those features, those missing stories, sooner?

Sometimes, one is: “We are using this new technology, and it
is risky.” So, maybe a key issue is determining whether that
risk is real or not, or how big it will be.

The fix-it plan is the work we focus on in the first couple of
days after the Agile Release Planning day. (We assume that
first Sprint will start in a few days, and when that starts, it
also includes Release Plan Refactoring.)

One idea is to communicate nothing to ‘anyone outside the
room’ until the basic fix-it plan has been done. At that point,
the plan is much better — much more accurate — so that the
amount of contingency can be smaller. Hence, we have more
confidence in communicating.

‘Finalizing’ the Plan

The plan is in fact never final. It can be revised every day,
although perhaps often the changes at some point can become
fairly minimal.

Completing the Plan 75

Assuming you have BSHs (as I described them earlier), then
in addition you typically also have to review the release plan
you have with the Level 1 people (maybe called a ‘Steering
Committee’), a business sponsors and some (other) stakehold-
ers, and maybe other groups. Perhaps also key customers. Get
their buy-in or comments or adjustments. This, of course, may
affect the communications plan.

Still, depending on what you say to whom, it can be perceived
as ‘final.’ So, be careful. Do not get the team in trouble by the
way you communicate. You must use common sense.

The Budget

Inmany cases, someone has already calculated the team’s cost
per Sprint.

So, let us use as an example: if the team costs $30,000 per
Sprint, and the first release will take 10 Sprints, then the total
cost of the first release is about $300,000. (This assumes no
other external costs.)

In any case, you can see that the calculation of the budget
is straight-forward once we have a cost-per-Sprint and a
number of Sprints.

We have now completed most of the basics.

There are a bunch of issues we have not addressed, some of
which I will address in the next section.

The ‘OTHER’
At the beginning I talked about the OTHER.

It is composed of mainly two groups of things.

1. Other steps or activities that you may want to add to
the process (the agenda for the day).

2. Addressing Infrastructure, Architecture and Design.

Other steps or activities

There are lots of other things from which any given team
might choose a few that it feels it needs to discuss during the
Agile Release Planning day.

These might include architecture, design, scope issues (in
scope, out of scope), organizational issues, defining the cus-
tomer sets, identifying the legacy systems involved, key im-
pediments, key risks, etc. Some teams like to identify key
assumptions. Some teams like to identify key issues, etc.

In general, I think discussion of these ‘other things’ is good.
Discussion of these other things must occur in some sort of
time box, each in a time box.

I strongly support using a whiteboard or flip chart to draw
and discuss these issues in a time box.

If the team finds this valuable, or your group has done certain
things in the past that were very valuable, by all means add
them to the process described here.

The ‘OTHER’ 77

Be sure to time box the work and the discussion, otherwise
you can spend a lot of time for relatively little value.

I-A-D

It doesn’t always happen, but often someone says, “Great,
we have most of the new features now, but we have a lot of
foundational work to do before we can build those features!”

And when this comment comes, it is almost always correct to
some degree.

I call this foundational work I-A-D: Infrastructure, Architec-
ture and Design.

We are using the house metaphor. The idea is that we must
lay the foundation before we can build the house on top of it.
We must do the foundational work before we can build user
features.

Now, again, in some situations virtually all the IAD is already
done or is given to us. So, our IAD work is minimal or maybe
very close to none.

In other situations (e.g., with some big companies) there is
an Infrastructure department, an Architecture Dept., and a
Design Department, and they must do ‘all’ of this kind of
work. Even if that is the case, sometimes we still must do
some work to integrate what IAD groups do with our own
‘product.’ So, typically we do the initial identification of all
the work, and then work with the other groups.

Here is what I recommend doing with beginning teams:

Do not address IAD at first. When a team first starts doing
Agile Release Planning this way, it is complicated enough. Do
not ask them to create IAD ‘stories’ at the very beginning.

The ‘OTHER’ 78

Create IAD stories. After the initial release plan has been
settled, or mostly settled, then add in the IAD stories.

We often think of them as technical stories or IAD stories.
Ideally we write them from a user’s point of view, but it is
OK if we write them from the point of view of a technology
person.

We just want to be careful not to build too much IAD before
we start building user stories. (In some places, this is an issue.)

Divide the IAD stories. A typical situation is that some of the
IAD work will be done by the team, and some will be done by
people or groups outside of the team. This varies a lot from
situation to situation and even from product to product (or
project to project).

For all the IAD stories that the team must complete, these
stories must be added to the team’s Product Backlog and
included in release planning.

All the stories (work) done by people outside the team must
be ‘accepted’ (by whomever will do it) and then tracked and
done. So, for those ‘cards,’ the team may wish to use them to
track the work of the outside people on a board (or part of a
board).

Including the IAD stories in the Product Backlog. As we said,
all of the IAD stories that the teamwill do must be included in
its Product Backlog. This means those stories need BV points
and Story Points. The BV should be what the customer would
consider value, the ‘wow factor’ to the customer, not how
important our technology people think it is. Typically to the
customer, foundational work has little ‘wow factor.’

We also calculate the R factor on each IAD story.

The ‘OTHER’ 79

Often, based on R factor, these items would be placed low on
the Product Backlog, but because of dependencies, we often
move many or most IAD stories much higher on the Product
Backlog. As the metaphor suggests, we can’t build certain
things without the proper foundation.

Sometimes the IAD has a significant impact on the delivery
date for the first release. Often this puts us under pressure to
figure out how to do the least amount of IAD and still get
the a few key new features out in a first Release. This is a
typical problem for us, and it is a problem that can be solved
professionally or unprofessionally. It is a difficult problem; I
don’t like to give advice from a distance.

Closing Up
When is the Initial Release
Planning completed?

To me, the team is balancing quality versus time. You want to
fit into a rough time box, and do the best job you can in that
timebox. You want the output to be of reasonably high high
quality given the time-box.

That means:

• a good vision
• a Product Backlog that reflects, and will realize, that
vision

• small stories at the top of the Product Backlog
• fairly accurate BV estimates
• fairly accurate effort estimates
• a reasonable ordering of the work
• each release is sufficient (MMFS; each release has enough
features)

• early (or quick) releases
• a plan we can win with

This is what you want. Often, due to time constraints, you
must live for now with lower quality, but which I mean we
understand the plan will need to be changed.

Closing Up 81

The PO and SM must balance quality and time and decide
which way the team wants to go for now. It is an art, not a
science.

For example, if the team in general is very impatient to begin,
you probably have to go faster than you ‘should’ for now, and
then catch up on the quality in Release Plan Refactoring.

Sometimes the team wants to go very slowly — they want
to think through ‘everything.’ If they start to get stuck in
analysis paralysis, want too much perfection, then sometimes
you must make them move on.

Very typically, if you have both types of people on the team,
one person wants to go faster while another person wants to
go slower. So, you must use common sense and balance the
needs of the team. In some situations, it does not make much
difference. If the quality is too low now, you can catch it up
in Release Plan Refactoring later.

Obviously, this approach (and probably any approach) will
not work well if managers or customers are demanding a
‘perfectly accurate’ plan on Day 0.

The bigger problem is the desire for perfection. The truth is
that the Day 0 plan is always far from perfect. Many things
will change. Do not let the team (or others) drag this out
beyond two days elapsed time — at least that is the maximum
I can imagine for six months of work with the teams I have
seen.

If they only want to extend it one to two hours longer, then
you should let them continue — this is probably a reasonable
compromise.

Closing Up 82

One Key Thing

You really want the top of the Product Backlog ‘groomed’
before the end of initial release planning.

What are the minimal requirements for this?

This is a common and open question in the Scrum community,
and I also do not have a ‘hard and fast’ answer, although a
strong opinion.

Opinion: At the least, the top stories in the first sprint should
be small. I want whatever work we think we can do in the
first Sprint (let’s say 20 Story Points worth) to be divided into
eight small stories, ideally about the same size. (I am assuming
a 2-week Sprint length.) Those assumptions mean every story
is about 2.5 Story Points…. more concretely, almost all stories
have either 2 SPs or 3 SPs.

To me, getting the stories in the first sprint to the right size is
the key before closing the ‘initial release planning.’

What do you have ‘in hand’ at the
end?

The main artifact is a Product Backlog.

It has the user stories in the order we plan to do the work. On
average the user stories are too big to go into real Sprints, but
they are also not terribly big.

Each user story has BVPs and SPs and an R factor.

No two user stories are tied; one story after the other in the
list.

Closing Up 83

If the Product Backlog is on the wall, then lines are drawn
where the first two releases are currently expected to occur,
and dates are associated with those lines. (If not on the wall,
at least this is done in concept.)

You also have estimated the velocity for the first several
Sprints, and you could have done a budget.

The Product Backlog includes consideration of risks, depen-
dencies, learning, MMFS, and other factors.

The dates include contingency, and we have estimated what
we think is reasonable contingency given all the factors.

We have started the discussion on communication, and have
taken some notes.

And we have a short list (3-5 items) of ‘work items’ to make
the plan better starting tomorrow morning.

Some details

It is relatively unimportant how the Product Backlog is in-
stantiated. We do recommend having the Product Backlog
as physical slips of paper ‘on the wall’ if at all possible.
Alternately, the PB can be shown as ‘items on the wall’ via a
Scrum tool such as Jira or something similar. Some of these
Scrum tools allow ‘all’ the cards to be seen at the same time
on a BIG screen. And the cards can be moved quickly with a
mouse or some similar interface.

I strongly recommend doing this work in person, collocated,
or that you get as many people as possible collocated.

As suggested, if you are collocated, I strongly prefer to use
Post-It notes (4x6 inches) or index cards on a wall or white-

Closing Up 84

board. The ideal is index cards with the magnetic stick pins
on a magnetic whiteboard (most whiteboards are magnetic).

See these magnetic pins in Amazon, as an example: ASIN
B01GDSCAE6

I would also recommend some large easel-sized Post-It notes,
as useful in many ways, including ‘holding’ the stories that
are the Product Backlog.

Soon you will want to put the Product Backlog into a ‘system’
or ’Scrum tool.’ I always ‘back-up’ the PB in a spreadsheet if
we are not using a more formal Scrum tool. Examples include:
Rally, Version One, Pivotal Tracker, etc, etc.

The Real Value
Now we have completed the initial release plan.

What were the key outcomes?

Well, the vision has now some sort of scope, date and budget.
It is likely that we now have a revised scope, date and budget
compared to the one they gave us before we started ARP.

We have a set of stories in a Product Backlog, and releases are
indicated.We have an estimate of the Velocity of the team.We
may have calculated a budget for the first release. We might
have a communications plan or some first notes on that. We
have estimated the contingency. And we have pulled together
a ‘fix-it plan.’

Usually on Day 0 the quality of the release plan is ‘crappy,’
to use the technical term. As it must be, given how much we
don’t know onDay 0. And given all the change that will occur.

To be fair, we also have set up what I call the ‘early warning
system.’

By this I mean we have the basic release planning informa-
tion, so that as time moves forward, we can see, in a useful
way, whether we are on track or not.

It is like 12 lawyers at the bottom of the ocean: a good start.

We also have a release plan that is easy to refactor, or at
least, much easier to change than when I used to update the
Microsoft Project (release) plan. That was hard! And we can

The Real Value 86

track against the (refactored) release plan, and give ourselves
(as a team) an early warning if we start to get into trouble.

The Real Value

Still, what is the real value? What is the most important
outcome of the day?

If you ask me and most of the people who have done this, it
is not the outputs or deliverables I have just mentioned.

The real win is that we now have ‘everyone’ on the same page.

You can say it many ways.

They are on the same page at a useful middle level of detail.
What the work is that we are about to do. This group includes
the full Scrum Team and the business stakeholders. This is
huge.

We did not stay at too high of a level (e.g., just agreeing on
the vision or the charter), and we did not get lost in the weeds
(at too low a level).

We have changed the people in three important ways.

They now all see the same elephant. The same vision, and the
same Product Backlog.

We have also affected their motivation. To each of them, this
is now ‘my’ project. They have their fingerprints on it. They
built it together. They own it. They have buy-in.

We have started to affect their behavior. They know the order
they will do the work. They have a sense of, “I want to put
more work in these high value stories, and I want to put less
work in the low value stories.” And it all makes more sense to
them.

The Real Value 87

Another key win is that the team has shared the tacit knowl-
edge. They have shared almost all the key tacit knowledge
they have about this work and themselves and the situation.
And this is so hard to make happen.

Again, let’s summarize the key benefits:

• they see the same elephant at a nice middle level of
detail

• they are much more motivated (buy-in)
• they have shared the tacit knowledge and created

knowledge together

These three are huge.

If you don’t recognize these people factors as the main goal,
then you can easily be talked out of following the approach
proposed here.

Someone will say: “It is more efficient if we have Vivek and
Kara stay in a conference room for 3 weeks, and then they can
tell us the answer later.” And that will sound convincing. But
it is wrong.

After you do this agile release planning this way, again and
again, you will appreciate more and more the importance and
value of these people factors.

These effects on the people are far more important than
the initial ‘plan’ per se, and much more important than the
‘scope,’ ‘date’ and ‘budget,’ which will all change.

Refactoring the
Release Plan
What’s Next?

Nowwe are about to start the first Sprint, or more specifically,
we can start the first Sprint Planning Meeting.

So, in some sense, release planning does not end. We now
begin RPR, Release Plan Refactoring.

RPR is mostly new words to express a set of ideas that
have gone under a bunch of names, such as ‘pre-planning
meeting’ or ‘product backlog refinement’ or ‘product backlog
grooming’. The main problem with those terms is that there
are many many different and non-agreeing definitions of
them out there in ScrumLand. So, I hesitate to use them
because you might easily get confused by those disparate
definitions.

Almost all of the ideas expressed here have been stated, at
least at a high level, by Jeff Sutherland and others. But never
under one term. (Or under different terms.) In some cases I
have taken a high-level idea and made it a bit more specific
and/or concrete.

It is absolutely fundamental to Agile Release Planning that we
refactor the release plan frequently. In fact, we must refactor
the release plan every Sprint — every Sprint. Mechanically
speaking, this is not a lot of work. Still, it is hard and important
work.

Refactoring the Release Plan 89

Why must we refactor? Because the whole Team (and others)
are actively trying to learn, in multiple domains, to help
deliver a better product for the customer. Given the amount
of learning by these knowledge workers, it almost insures that
the plan must be updated every Sprint.

Perhaps sometimes there will be so little change and so little
learning that we don’t have to change the release plan at all.
Yes, maybe this occasionally happens, but at least we must
evaluate that no change is needed to the plan.

The following picture is what I usually draw to explain RPR
(Release Plan Refactoring).

In case your print out is not in color (but only B&W), the RPR
area (to the right of those letters) is supposed to be in red. And
the Norm area (to the right) is supposed to be in black.

The black ‘zone’ represents the normal work of a Sprint.

Refactoring the Release Plan 90

(Hence ‘Norm’.) We show two Sprints (N and N+1), and each
Sprint is two weeks (in this example).

(I will be talking of the black zone and the red zone, which
makes it a bit more fun for me, since it reminds me of hockey.)

The three big meetings are shown (Sprint Planning, Sprint
Review and Retrospective) as slashes at the beginning and end
of each Sprint.

And the squiggle line (in black) represents the team doing the
so-called ‘real work’ of building the stories. And it represents
doing the Daily Scrums.

In parallel, the PO leads the RPR — the red zone.

In the red zone, the PO may have many one-off meetings
(indicated by the random dots). In addition, we recommend
the PO pull together one meeting each week to do the RPR
work.

The meeting length can vary as needed, but about one hour
for each meeting is common. The attendees can vary, but
generally we want the whole Scrum Team and we would like
some BSHs (Business Stakeholders). I usually can’t get the
BSHs to show up regularly — this is not great, but we can
live with it.

In the first week, we have the Long-Term RPRmeeting (‘L-T’).
This is not strictly long-term only, but the focus tends to be
more long-term. In the second week, we have the Short-Term
RPR meeting. Again, not strictly S-T.

The key to the S-T meeting is to see if all 8+ stories proposed
for Sprint N+1 are ready-ready. This S-T meeting happens
roughly 1.5 to 2 days before the Sprint Planning Meeting (for
Sprint N+1).

Refactoring the Release Plan 91

Long-Term Release Plan Refactoring

In the long-term Release Plan Refactoring meeting, we do all
of the following, but only ‘as needed’:

• changing the vision
• improving the Product Backlog Items (adding, subtract-
ing, smaller, better)

• re-estimating business value (very key and very hard)
• re-estimating the effort (e.g., where Story Points are
wrong, adding SPs for new stories or newly sliced
stories, etc.)

• taking a new look at the R Factor (ROI per story)
• discussing new learning about risks, dependencies, learn-
ing, MMFS, etc.

• re-ordering the work
• doing a new scope-date trade-off, usually to make the
initial release smaller (fewer aggregate Story Points)
and sooner

• including the newest Velocity average into the projec-
tion (based on recent trends)

• adjusting a (revised?) contingency and communicating
the new, new release plan (scope, date, budget) to the
right people

Short-Term Release Plan Refactoring

For S-T Release Plan Refactoring, as we said above, the main
goal is to assure that all 8+ stories are ready-ready, or at least
have the implementers judge whether each story is or is not
ready-ready. And they use the Ready, Ready Criteria for this
(aka Definition of Ready).

Refactoring the Release Plan 92

The team uses the S-Tmeeting to assure it has the information
it needs to be successful in the next Sprint. In effect, the Team
prepares so that they will have a successful Sprint Planning
Meeting.

More specifically, the team reviews the information that the
PO has had prepared for each Story, and reviews that against
their needs and against the ready-ready criteria to decide
whether each story might go into the next Sprint.

I like to use Thumb voting. And any Teammember can black-
ball a story with a Thumbs down. If anyone has a thumb
sideways, then he or she must identify what information is
lacking and the PO has a day or so to get that information
(either the PO or someone else will get it). A vote of thumbs
down implies that additional information needed is too great
to gather in 1.5-2 days.

The purpose here is based on Garbage In-Garbage Out. The
Stories must be defined enough so that the Team has a good
chance to ‘get them done’ in the Sprint.

As mentioned earlier, some people use phrases such as ‘prod-
uct backlog grooming‘ or ‘product backlog refinement’ for
this. (Note: I find ‘product backlog grooming’ is defined many
ways, depending on who you ask.)

Comments

Other activities that could happen in the L-T meeting or the
S-T meeting include:

• improving the stories or PBIs (the wording, the INVEST
criteria, etc.)

Refactoring the Release Plan 93

• asking or answering questions from the team about the
upcoming Sprint stories

• reviewing the acceptance criteria for each story
• reviewing and adding detail (notes, acceptance criteria,
etc.)

• identifying key content for the Enabling Spec (defined
below)

• reviewing the Enabling Spec (defined below) for each
story or PBI that is expected to be in the next Sprint
[This is mainly in the S-T meeting.]

• other reviews or activities (as the team may decide)

Some of these topics can be discussed or worked on earlier,
within reason.

The Enabling Spec is just enough, just-in-time documen-
tation. (We are not worried now exactly how the ‘docu-
mentation’ is instantiated, e.g., maybe on paper or maybe
electronically, etc., etc.)

To start, think of one ‘mini-spec’ for each user story. Imagine
that we quickly drew some pictures and made a few lists.
And that these notes are stapled together as a mini-spec. An
Enabling Spec.

The documentation is in the most useful form, that is, pic-
tures and lists. The amount of the information varies based
on many factors, including the knowledge and experience
of the team. Typically a more experienced team needs less
documentation, and a less experienced team needs more.

So, how much? Hard to say from afar. But often it is a half
page or a couple of pages of pictures or lists or formulas,
etc. that enable the team, and that give that team all the
information it needs to be successful quickly.

Refactoring the Release Plan 94

Nothing the Team does not use. And enough so that they think
they have no further questions. To be fair, always the team has
more questions later, at least on one story or another.

One could argue that L-T Release Plan Refactoring and S-T
RPR are completely different. I don’t agree. I think it is more
helpful to view them as coherent, that they fit together and
that they both are key to success.

One of the purposes of release planning is to make the
work in the Sprints more successful. S-T RPR is not really
completed until, for each Sprint Planning Meeting, we have
the information we need ready-ready for a successful Sprint
Planning Meeting (and a successful Sprint).

Among the key success criteria for a Sprint Planning Meeting
is that we use the time of the business stakeholders well.

Let me pause.

Why is using the time of the business
stakeholders an important issue?

The business stakeholders are the key independent check
on the (limited) thinking of the Product Owner. We know
from long experience in our industry that ‘knowing what
the customer wants’ is extremely hard. Extremely hard. The
business stakeholders are people whose time is scarce and yet
these people are essential to us in getting a much better fix on
what the customer really wants (or what the firm wants).

We want the business stakeholders in the Sprint Planning
Meeting agreeing with what the team takes in (which stories
the team commits to do). We want them at the Sprint Review
giving us feedback. Because these independent input and

Refactoring the Release Plan 95

output checks are so vital, we must use the time of the
business stakeholders efficiently. Or, very often, they will
not come (or start skipping meetings). And their presence is
crucial.

Now, back to the broader issues.

Yes, to make it easier to understand, we talk about short-term
RPR and long-term RPR, and then we talk about the ‘black
zone,’ where the stories are actually built. But all three of these
things work together and support each other.

Thus, for me it is better to think of higher level Release Plan
Refactoring and lower level Release Plan Refactoring. When
people say ‘Product Backlog Grooming,’ they often only mean
lower level Release Plan Refactoring of those stories about to
go into the next Sprint.

Again, the key idea here is that we always refactor the release
plan every Sprint. We improve it. This is absolutely key to
adaptive planning.

Level 1 Planning and
Level 2 Planning
I find that all companies I work with have at least two levels
of planning. Often a larger firm will have 5 levels of planning.

The two levels are shown in the following picture. (next page)

Each company is different and uses different words, but the
basic concepts are usually very similar. At least that is what
I have experienced. So, something like the picture above is
fairly common across firms.

Level 1 Planning and Level 2 Planning 97

At Level 1, we have a whole bunch of ideas coming in
on the right (they may call these initiatives, or projects or
product ideas). Maybe the ideas come in over the year, or
in a brainstorming session. Then the firm has one or several
people to evaluate each idea.

Usually these people or this committee (many different names
are used) is rational, and describes its decision-making cri-
teria; how they will decide what to prioritize. Often this
includes benefits over costs, time, and specific local factors (X
and Z in my example). Hence the function in the top middle.

Then ideas are reviewed and compared. And the ‘committee’
(circle) prioritizes the work. It may be at the release level, at
the product level, or at the project level, depending on how
they think of each set of work.

The work is lined up (prioritized) usually as projects, from 1
to N, meaning that in the next year (next period), we feel we
can get these N projects done.

Often they speak of these ideas now as projects, and they often
speak of ‘the 1 to N list’. It might also be called ‘the plan’ or
‘the roadmap’ or another name. This 1-N list can have many
names.

So, the work has been prioritized (by the Level 1 people) at a
macro level, and some work does not make the cut. That work
won’t be done ‘next year’ (or whatever the time period may
be).

Next, one project is given to a ‘team’ (or some group of people)
to deliver.

Always, the ‘giving’ includes some information. Perhaps only
a discussion, perhaps one sheet of paper, perhaps a formal
BRD (business requirements document), but at least the work

Level 1 Planning and Level 2 Planning 98

is said to have a ‘scope,’ and to some degree it does. Often the
work also has an estimated due date and budget as well.

Then, at Level 2, the team (or the small group) plans the work
at a lower level.

In the old days, this would often be a PM (project manager)
using Microsoft Project or something similar. It was very
painful.

So, instead of that old style Level 2 work, I am suggesting we
do ‘Agile Release Planning.’

Is Level 2 planning repeating the work done in Level 1
planning? Yes, in some sense.

What is different? We think there are 3 key differences.

1. We have the best people in the company of Project 1.
The best team and the best BSHs.

2. We will plan at lower level of granularity, and always
the planning is better then (as long as the level is not
too low).

3. We have learned some things since Level 1 did their
estimate. Time has elapsed, things have changed, we
have learned. And therefore the Level 2 planning will
be better because it will include this new learning.

Could Level 2 planning come up with different ‘answers’ than
Level 1 planning? Yes, of course, and in fact, to some degree,
it is certain to happen. For example, the scope, the date, the
budget could all be (somewhat?) different. This should be
considered a fairly normal result.

How do we cope with that different result? In my experience,
usually (but not always) the Level 2 planning is better, more
accurate, more meaningful.

Level 1 Planning and Level 2 Planning 99

We suggest that, whether the differences are small or large,
that your team give the Level 1 people some ‘feedback.’ Hence,
you see that line in the picture. The team and the committee
should discuss and decide on the appropriate action.

Two key suggestions.

1. Draw the picture of how your firm or department does
Level 1 and Level 2 planning now. First, you will notice
that many people do not know how it works, or will
not recognize the same picture. This learning will be
helpful.

2. You will notice that your firm’s picture will not be ‘as
good as it should be.’ For example, it may have some
weaknesses compared to my picture. So, over time,
improve the weak areas.

My key point

My key point for now that affects what we do in Agile
Release Planning…We do not start Agile Release Planning in
a vacuum, with a blank slate. Always it is preceded by Level
1 planning. We always start with something, and my Level 1
idea suggests some of the things that might be.

So, I assume every company is already doing Level 1 planning
in some way — perhaps even two or three levels of planning
‘above’ the team level (the team level is ‘Level 2’ as described
above), and then the team must do ‘Level 2’ planning in more
detail. This is normal, common, virtually universal in my
experience.

You must devise a reasonable solution regarding how those
two levels of planning (or more levels) interact.

Level 1 Planning and Level 2 Planning 100

For your company to become more fully Agile, that interac-
tion probably needs to change.

Suggested, not
Prescriptive
In this book I made many basic concepts quite concrete. To
conserve space, I did not suggest alternatives.

It may have seemed that I was being prescriptive (a word
generally frowned upon in the Agile community). This is
not the case. I merely described what I usually recommend.
I respect that you have an independent mind, you know
your specific situation and you will use common sense in
applying (or not applying) these specific practices (or even
these specific ideas) to your situation.

I made the ideas concrete to make them more practical and
more visible to some people (those of us who think more con-
cretely). We also know that “in theory there is no difference
between theory and practice, but in practice there is” (Yogi
Berra). Meaning, for example, that we often have a better
understanding of ideas once we can see them in practice.

Obviously, this approach at explanation has risks. Some read-
ers will no doubt take me as prescriptive.

Again, I think these ideas and practices work in many com-
mon situations, but I am not trying to be prescriptive, and far
less am I expecting you to take these words that way. Use
common sense (which is very uncommon, it seems).

Final Comment
Agile Release Planning is, most importantly, about the people.

It is about helping the individuals and the team be more suc-
cessful. It is about delivering better products to the customer.

I hope you will use common sense in applying these ideas,
and I hope they are helpful to you, your team, and ultimately,
your customers.

Please contact us with comments or questions. Or if we can
help.

Joseph Little

jhlittle@kittyhawkconsulting.com

FAQ
Below are some frequently asked questions.

1. What do you recommend for multiple teams in a scal-
ing situation?

Ans: For now, I am not trying to discuss scaling in this book
much. Please contact me to discuss. To answer it here would
take many more pages. I do plan to add a section later to
discuss this.

The short answer is that scaling is always hard. The commu-
nications, for example, are always hard. ARP can be done,
using the basic ideas in this book, but it remains hard. We are
stuck in a contradiction:

• in simple terms, we want everyone to know ‘every-
thing,’ but…

– communicating across seven people is hard, and
with (say) 30 people it is very, very hard.

I will suggest some more specific ideas later.

1. Where is your scientific proof that this is the best
method?

FAQ 104

Ans: In general, as an overall approach, it is heuristic. That
means: It has no proof that I would call scientific, but I have
done it many, many times with many teams, and it works.

I have had almost no situations where I could not get the team
to do it (fairly special situations). Maybe that was the right
decision for them.

I am not aware that any approach has been scientifically
proven. However, there has been significant study on some
parts of the approach (and on alternatives). I hope to write a
paper soon that reviews that information.

I think these methods are ‘against’ some common water-
fall or Agile methods, but this approach has different goals
than the ‘old’ methods have or had. For example, suppose
someone has evidence that Planning Poker were not the
most accurate method for estimating – nonetheless I would
likely still recommend it because of the value of the team
knowledge creation with Planning Poker, and the sharing of
tacit knowledge. That is a main goal for me (and, I think, for
you).

In simple terms, ‘success’ depends on what you value.

1. What about use cases?

Ans: I generally like light-weight use cases, although I do not
usually recommend them where they are not already being
used.

In general, I have not found them necessary when doing the
initial release planning, but they often are very useful later
(for the implementers and others in doing their work). The

FAQ 105

issues that use¹⁰cases¹¹ address will come up in estimating the
effort (and in other places), and the issues should be discussed
(and maybe documented) ‘just enough’ at that time so that
release planning may proceed.

1. How about more discussion of the theories behind
release planning?

Ans: I did discuss the ideas quite a bit. In particular, I feel that
the goals I have for Agile Release Planning are different than
whatmany people have had for release planning, but I wanted
to keep this book short. Perhaps there is another book in that
subject. I thought it would be more useful to many people to
describe the practical application first. Some people see better
when you talk practical details.

1. Should we do this if we don’t have a full team and a
full set of business stakeholders?

Ans: Probably yes. Try to get a full team (I am assuming seven
people) and four good business stakeholders. If you only have
nine people (when wanting 11), then I would probably start.
At the end of the day, you can only do what you can do. Then,
it is probably best to start with what you do have.

I suppose one could imagine having only one person (out of
the 11). In that extreme case, I probably would delay, with the
hope of gathering at least nine in a day or two or a week. If
so few can show up, do you really have an important set of
work to do?

¹⁰https://en.wikipedia.org/wiki/Use_case
¹¹https://en.wikipedia.org/wiki/Use_case

https://en.wikipedia.org/wiki/Use_case
https://en.wikipedia.org/wiki/Use_case
https://en.wikipedia.org/wiki/Use_case
https://en.wikipedia.org/wiki/Use_case

FAQ 106

1. Do you think user story cards are sufficient for Agile
Release Planning? When should we add acceptance
criteria?

Ans: I think usually a team can do decent initial release
planning with only story cards. Almost always they discuss
some other issues along the way. Those important details
should be documented in some way. For example, for a few
stories, they might write down the acceptance criteria that
were identified. (But do not do that for all stories.)

But those details (the ones discussed) are never all the details
that the implementers will need. Before doing work in the
Sprint, I recommend the enabling spec idea; ‘just enough,
just in time’ documentation delivered before the Sprint for
those stories going in the Sprint. “Documentation of the
requirements” is saying it too quickly, but it gives you the
basic idea. In any case, not my main subject here.

I definitely recommend, at a minimum, that the acceptance
criteria for a story be defined before that story enters the
Sprint.

1. What if they did Level 1 planning before they gave us
the work (project)?

Ans: Perfect. (See above for a discussion of the meaning of
Level 1 and Level 2 planning.)

Usually you have a bit more clarity on scope and the wished-
for date, etc.

My suggestion is: Do the work described above. Use the prior
Level 1 work as partial input, but only as input. Then, after

FAQ 107

you are done, compare what you have to what they told you,
and then explain your findings to the Level 1 committee.

The Level 1 committee may agree or disagree with you, but
at least your Scrum Team will have a basis for engaging with
them.

1. What if we are given a BRD (business requirements
document) before we begin?

Usually it makes very little difference to the Team.

It might be useful.

The typical experience is that, when we start the User Story
Workshop, someone says, “We ought to use the BRD,” but no
one really looks at it. Perhaps someone says, “Let’s do this
first, and then look at it later.”

Then we start writing user stories. Maybe one or two people
at first are looking at the BRD, and then, slowly, writing a
few user stories while other people are prolifically writing
user stories without the BRD. Person 1 says, “Do we have
everything?’” Person 2 says, “I think so.” Person 1 says, “Well,
I will compare all of these to the BRD.” Person 2 says, “Not
now, right? We have a pretty good list for now.” Person 1 says,
“OK.”

Q1: Do we really have everything? No!

Q2: Does this BRD still have an idea or two that could help us
identify one or two additional stories? Yes.

Q3:Was the BRD itself complete? No. And we now have some
user stories (and some are nowhere in the BRD) that prove
that the BRD was not complete.

FAQ 108

Q4: Does anyone have the heart to read every sentence in
the BRD carefully and identify those last two ‘missing’ user
stories? No, although one or two people may make a half-
hearted attempt at it. Most likely, it will be the guywho ‘owns’
the BRD the most. Even he will give up fairly soon.

Q5: Yikes! So, how dowe identify themissing stories? First, on
Day 0, there are always, always, always some missing stories
— and not just the ones that are buried inside that 50 page
BRD. Second, the PO must discover ways for ‘everyone’ to
help identify those missing stories sooner. The first method:
In each Sprint demo, ask the business stakeholders, “Did
we do the most important work for you in this Sprint that
we possibly could have done? With 20-20 hindsight, which
features shouldwe have built?” And theywill start identifying
the missing stories if they are good business stakeholders.

1. There are lots of special cases. You did not deal with
them. Why?

Ans: I wished to discuss things quickly, to keep the book short.
Also, you (the reader) are probably in a better position than
I to address the special cases, since they often are specific to
your situation. I assume you can think — you see the values
and principles proposed here (or have yet better values and
principles) — and can apply these values and principles for
yourself in your specific situation.

But, as people raise questions about specific situations, I will
address them in this FAQ or in this book.

1. How long should Agile Release Planning take? Could it
take more than 1 calendar day?

FAQ 109

Ans: Yes, it could. We do think many people have a strong
bias to ‘wait for perfection.’ Or ‘do it once, perfectly.’ And this
must be avoided.

But, for example, working together intensely with 11 people
is tiring, and especially to introverts, typically. So, if you
have a group that starts to get tired, then giving them longer
breaks and having it extend into the nextmorning seems quite
reasonable.

Just do NOT let them do individual parts of the agenda for
too long. This will not help.

Another case is if you have a lot of work, let’s say work for
12-18 months. Then the ARP should last more than 6-8 ‘ideal’
hours.

[stopped]

Note on the Author
Joseph Little is an Agile Coach and Certified Scrum Trainer.
He was graduated with a BA from Yale, became an interna-
tional banker in NYC and then received his MBA from NYU.
Around this time, he got involved in projects and technology
in a more professional way. He learned a lot from co-training
with Jeff Sutherland over eight courses. He was originally
introduced to Agile in 2000, and has been doing Lean-Agile-
Scrum exclusively since 2005.

To learn more about him, you can follow these links:

Twitter: jhlittle¹²

LinkedIn: www.linkedin.com/in/joelittle¹³¹⁴

Website: www.LeanAgileTraining.com¹⁵¹⁶

Blog: www.LeanAgileTraining.com/blog¹⁷¹⁸

Please send him comments on this book at jhlittle@kittyhawkconsulting.com

Thanks!

¹²https://twitter.com/jhlittle
¹³www.linkedin.com/in/joelittle
¹⁴[images/2013-10-10_17_29_17.jpg]
¹⁵http://leanagiletraining.com
¹⁶[images/2013-10-10_17_29_17.jpg]
¹⁷http://leanagiletraining.com/blog
¹⁸[images/2013-10-10_17_29_17.jpg]

https://twitter.com/jhlittle
http://leanagiletraining.com/
http://leanagiletraining.com/blog
https://twitter.com/jhlittle
http://leanagiletraining.com/
http://leanagiletraining.com/blog

Glossary
Acceptance Criteria: A short list of criteria to determine
whether one specific User Story (or PBI) is complete. Usually
these items define tests at a high level. Each story typically
has a different set of acceptance criteria. (You may wish to
compare this to the DOD.)

Agile Release Planning (ARP): In short, the initial work done
to create the Product Backlog and the release plan before you
start Sprinting.

Business Stakeholders (BSHs): We have a specific definition
that may be different than what you use at your company. To
us, the BSHs are those people who come to each Sprint Review
to give the Scrum Team feedback on whether the completed
user stories will satisfy or delight the customer. So, the BSHs
must be able to quickly and accurately assess whether a user
story will delight the customer. And if not, can define in detail
what needs to change. In addition, we want the BSHs to come
to the Sprint Planning Meeting regularly to review the inputs
to each Sprint, and to work closely with the PO as needed.

Business Value (BV): The value in building a product or
feature or user story. The value may be in the mind of the
customer or in maximizing shareholder wealth for the owners
of the producing firm. There are many different ways of
thinking about Business Value (e.g., reduced risk), and this
concept includes them all.

Day 0: The ‘first’ day of the effort, whenwe are dumbest. Also,

Glossary 112

the day the team does Agile Release Planning, and before the
first sprint has begun.

Definition of Done (DOD): The list that describes the degree
of ‘doneness’ of a feature or PBI or user story. One DOD
list applies (usually) to all stories for the Team. We use the
DOD to judge whether a story is ‘done’ in the Sprint and
whether the team has earned the related Story Points as part
of the Velocity. If a story is done according to the DOD, we
often say it is ‘done, done.’ ‘Done, done’ does not mean that
story has been released (e.g., if software, then released into
the production environment). Every team must have a DOD.

Enabling Spec: A couple of pages of pictures, lists, formulas,
etc. that enable the team to build that PBI or user story
as quickly as possible. The implementers define all of the
information they need to be successful quickly, i.e., they
define what should be in the Enabling Spec.

I-A-D: Infrastructure, Architecture and Design.

Impediments: Anything that slows down or prevents a team
from building a great product as quickly as possible. A possi-
ble impediment could be something holding back the quality
of the work.

MinimumMarketable Feature Set (MMFS): The smallest piece
of functionality that can be delivered that has value to the
organization delivering it and/or the people using it.

Planning Poker: A team uses the Planning Poker cards or
Agile estimation Fibonacci cards to vote on the relative Story
Points of a to-be-estimated user story compared to the size of
a reference story. So, if a story is voted as a three, then it is
three times bigger than the reference story (typically assigned
one Story Point). We use wide-band delphi estimation to vote

Glossary 113

on the Story Points. The implementers vote. Note: Planning
Poker is a registered trademark of Mike Cohn.

Priority Poker: Very similar to Planning Poker, except that it is
about the relative Business Value of one user story compared
to a reference story. It is not about the effort. Again, wide-
band delphi estimation. The BSHs and the PO vote.

Product Backlog (PB): The list of the features or requirements
requested for a product, expressed as a prioritized list of
Product Backlog Items or user stories.

Product Backlog grooming/refinement: These words have
many definitions. We will give you ours. The first idea is the
metaphor that the Product Backlog is kept clean and orderly.
Beyond that, the community does not clearly agree on what
the terms mean. Often it includes adding detail to each story.
It may include re-ordering the PB as new information arrives.
Often it includes slicing and dicing the stories a Sprint or two
before that story is put into a Sprint. The Scrum Guide does
not define when or how Product Backlog Refinement should
happen. We think it should include everything that we define
as Release Plan Refactoring.

Product Backlog Items (PBI): An item in the Product Backlog.
Before a PBI is put into a sprint, it should be at least small
enough to be completed by a team in one Sprint. We recom-
mend at least eight (plus) about equally-sized small PBIs per
Sprint. Each PBI has Business Value, at least in the eye of the
PO. PBIs are typically expressed in user story format, in which
case they may be called user stories. PBIs are broken down
into typically 4+ tasks in the Sprint Planning Meeting.

Product Owner (PO): The person who has final authority to
decide the order of the Product Backlog. He or she represents
the customer’s (and firm’s) interests in backlog prioritization

Glossary 114

and requirements questions. This person is responsible for the
quality of the Product Backlog, and leads the Team in defining
what the new product will be.

Reference Story: We have two reference stories. The first is
the largest Business Value story. We give that a value of 100,
and it is used to compare all other stories to and to vote on
Business Value. The second is the smallest effort story. If it is
not too small and not too large, we give that a value of one
Story Point. Then we compare all other stories to it and use it
to vote on Story Points for each of the other stories.

Release Plan Refactoring (RPR): This is the set of work we do
to refactor or improve the release plan and to get the stories
‘ready, ready’ before they go into a Sprint. Depending on your
situation, you could choose from many different activities to
make this happen. We recommend also two team meetings
— one in the first week to review long-term RPR, and one
in the second week to review short-term RPR. In essence,
whatwemean by RPR is essentiallywhat the community calls
Product Backlog grooming, or Product Backlog refinement or
Pre-planning, and other names.

R factor: The ratio of Business Value Points to Story Points.
It represents return on investment, bang for the buck, cost-
benefit analysis or ‘identifying the low hanging fruit.’

ScrumMaster (SM): The facilitator for the whole team (includ-
ing the Product Owner). He or she works to assist both. The
main job is impediment-remover-in-chief. That is, to drive
the removal or mitigation of impediments of all types so the
Velocity of the team is likely to increase significantly.

Scrum Team: Optimally comprised of seven people (possibly
plus or minus two people). It self-organizes and is responsible
for success. One example: to meet the Sprint goals as a team.

Glossary 115

It includes the implementers, the Product Owner and the
ScrumMaster.

Sprint: An iteration of work where an increment of product
functionality is implemented (done, according to a good
Definition of Done). A Sprint cannot last more than 4 weeks;
we recommend 2-week Sprints usually.

Story Point (SP): Used to estimate the effort required to
implement a story; a number that gives the team a relative
size to each story. It is voted on in comparison to the reference
story. It is related to size, complexity and relative effort.

User Story: A requirement expressed in the user-story format
(As X, I want Y, so that Z). To be a Sprint-sized user story,
we recommend that you can fit eight stories into the Velocity
of a two-week Sprint. (Example: Velocity = 20; 20/8 = 2.5,
so that most stories would be about two or three SPs). It is
a short definition of a requirement, containing just enough
information so the developers can produce a reasonable initial
estimate of the effort to implement it.

Use Case: A diagram or list of steps usually describing inter-
actions between a user and a system, related to achieving a
particular user goal.

Vision: A future view of the solution to be developed. It is
usually inspiring. It gives a conceptual feeling for how the
customer’s life would be better once we deliver the proposed
product.

Velocity: How many Story Points of effort were ‘done, done,’
on average, over the last three or four Sprints. Via the Yester-
day’s Weather pattern, we use it to guess how many stories
(really Story Points) to take off of the top of the Product
Backlog and bring into the next Sprint. (The implementers get

Glossary 116

the ultimate decision, but Velocity provides the first guess.)

RULES

1. We don’t always follow the rules. We can make specific
exceptions. Rarely.

2. All acronyms are ‘explained’ in the glossary.
3. If it is capitalized in the ScrumGuide, thenwe capitalize

it.
4. If a term is in the Glossary, then if it is mentioned in

the text…. [then what should happen…. Caps? Italics?
Italics the first time??]

5. These RULES will be deleted in the final copy.

	Table of Contents
	Introduction
	Planning, Not Plans
	Emerging
	Early Edition
	About this book
	Warnings

	Comments on the ‘no estimates’ idea
	Why Agile Release Planning?
	The Story Begins
	Next steps
	What Happened
	What Happened Next?

	My Approach — Summary
	The People
	The Process

	My Approach - The Details
	The People
	Vision
	Product Backlog
	Roles
	User Story Workshop

	Business Value
	Business Drivers
	Priority Poker

	Effort
	Definition of Done
	Planning Poker

	The R Factor
	Risks, Dependencies, Learning, MMFS, Other
	Completing the Plan
	Estimating Velocity
	Finishing the Plan
	Communicating the Plan
	The Fix-It Plan
	`Finalizing' the Plan

	The `OTHER'
	Other steps or activities
	I-A-D

	Closing Up
	When is the Initial Release Planning completed?
	What do you have `in hand' at the end?

	The Real Value
	Refactoring the Release Plan
	Level 1 Planning and Level 2 Planning
	My key point

	Suggested, not Prescriptive
	Final Comment
	FAQ
	Note on the Author
	Glossary

