
Enterprise Scrum:
Scaling Scrum to the Executive Level

(Plus Epilogue)

Daniel R. Greening
 dan@greening.org

Abstract

As of 2009, Citrix Online manages 25 software
engineering teams across 6 products using a single
top-down Enterprise Scrum. We know of no other
company doing this, yet it provides extreme visibility
and control at the CXO level. It promotes agile
thinking enterprise-wide, driving non-engineering
departments to adopt Scrum. We believe it made us
more profitable.

We estimate effort in team months, run quarterly
Sprints, assign whole teams to projects, meet in
weekly stand-ups. We start, postpone or cancel whole
projects.

Within individual projects, we still use 1-4 week
Sprints and all the trappings of the classic Scrum
process, including, in some cases, Scrum-of-Scrums.

New challenges arise: Shared resource
constraints suggest Kanban methods. Net Present
Value can justify prioritization, but creates
controversy. Moving teams between projects requires
rapid programming environment setup. The process
forces executives to justify decisions.

This paper was originally published in the
Proceedings of the 2010 Hawaii International
Conference on System Science.

This revision provides an epilogue discussing a
useful agility metric: project duration measured from
inception until customer revenue. It shows how
project duration changed as Citrix Online evolved,
starting from a startup, through its acquisition and
maturation, and finally through its rejection of
classic project management, and its adoption of
Enterprise and regular Scrum. In less than three
years, from the time the company adopted agile
methods to early 2011, average project duration
dropped from 35 months to less than 4 months.

1 Introduction

The engineering department is one of the most
expensive creative groups in many companies. Its

output can determine the company’s success, and so
maximizing its productivity should be a primary
concern: Do its products compel customers to buy?
Do its infrastructure projects reduce costs? Are its
systems inexpensive to maintain and use?

For single software products, Scrum gave us the
transparency to answer productivity questions more
thoughtfully and the tools to adapt more rapidly [9].
The main scaling challenge small companies faced
was this: How do we scale Scrum to maintain agility
when a project requires more than 9 people?

Bottom-up techniques arose to scale Scrum to
larger projects: Scrum-of-Scrums [1], Feature Teams
[2], balancing stability with features [3], etc. And yet,
even with these methods, as projects got larger,
interdependencies increased and visibility decreased.

At the CXO (CEO, VP, CTO, etc.) level in
larger companies, decisions and resource planning
becomes very difficult with bottom-up approaches:
we can see everything, but too much information
obscures visibility. Decision-making becomes hard.
We found ourselves pushing some critical decision-
making responsibility down, hoping for the best, but
could not make optimal trade-offs, whether decisions
were made at the top or at lower levels.

Bottom-up techniques do not produce the
“sticky-note” simplicity of Scrum at large scales.
ScrumMasters can spend hours computing roll-up
estimates, assembling product backlog items into
Epics and tracking interdependencies. Determining
when a project is “Done” becomes a spreadsheet
exercise that aggregates many Product Backlog
Items. Expensive tools arose to help people do this,
but their complexity makes their utility questionable.

1.1 The Sutherland Challenge
Our Enterprise Scrum approach emerged from

trying to find a simple solution to what I call “The
Sutherland Challenge.”

I met Jeff Sutherland, one of two inventors of
Scrum, on a bus in Toronto. He works for OpenView
Venture Partners, a venture capital group that works
closely with portfolio startups to maximize
productivity. Sutherland teaches OpenView’s
portfolio companies to use Scrum, and advises its
general partners to diagnose and repair productivity
problems in portfolio companies.

Sutherland told me that general partners ask
CEOs these questions:

1. What is your current velocity?
2. What are the blockers impeding your progress,

and what are you doing about them?

If the CEO cannot answer the first question, she
cannot balance features against effort. She cannot
coordinate non-engineering activities with release
forecasts. If the CEO cannot answer the second
question, there isn’t sufficient communication
between engineering and top management to remove
impediments quickly. Engineers could get stuck for a
long time with no resolution.

1.2 Our Response
The Sutherland Challenge was designed for

startups, but I told our President, who leads a 900-
employee division of Citrix, that he should be able to
answer the same questions for our multi-product
division, albeit at a chunkier level. He then asked my
boss, the VP of Engineering, for this information, and
he, in turn, asked me for the data, unsure whether to
be amused or annoyed. What would this mean?

Initially, we attempted standard bottom-up
approaches, with the velocity of the entire 200-
member engineering department expressed as “Story
Points per month.” It would not be simple. Our teams
were big and small, with Sprint lengths from 1 to 4
weeks long.

To get an aggregated velocity, all Scrum teams
would have to calibrate and unify story point units. It
would require ScrumMasters to roll-up Story Points
from Product Backlog Items into Epics. Our tracking
tool did not allow for easy ranking of Epics. Finally,
it would require our 25 ScrumMasters be trained to
use the same method. None of this seemed agile.

My quest had a time-box: our department wanted
to show that hiring additional engineers could
provide greater profitability to the company at a
yearly budget meeting. Our company makes budget
decisions yearly, and budget planning was looming.

As a temporary solution, we had architects and
team leads estimate large projects (including some
products) with “Enterprise Story Points.” These ESPs
were roughly equivalent to “estimated team months
times 100.” We did not use rollups, because they
would take too long. Furthermore, we decided to
create a first quarter-long “enterprise sprint” to
coincide with our company’s normal planning period.
We decided to run weekly stand-ups at the company
level. When things stabilized, our thinking went, we
would meet less frequently.

It turned out that all of these temporary
approaches have become permanent. Our company
was able to satisfy The Sutherland Challenge. We
have a velocity of about 5000 Enterprise Story Points
per quarter. We hear about blockers every week at
our Enterprise Standup. Our VP of Engineering can
tell you all the blockers and what we are doing to
remove them. In fact, you can look at the meeting
notes we email broadly, and the blockers are
highlighted.

2 Enterprise Scrum

Enterprise Scrum proceeds from the notion that
scaling Scrum to a multi-product enterprise should be
dirt-simple. It requires thinking about every attribute
of Scrum—Sprint length, estimation units, backlog
item size, feedback-loop frequency, the resources to
be assigned, the planning process, the ranking
system—and scaling them to meet the planning
requirements of the whole company. It requires
rejecting process complexity.

Figure 1. Enterprise Scrum

Figure 1 shows the feedback loops of Enterprise
Scrum. A Quarter is equivalent to a Scrum Sprint: it
includes planning, work, production of feasibly
releasable products, and a retrospective. A weekly
standup provides a forum for Product Managers,
ScrumMasters and Team Leads to discuss progress,
short-term plans and difficulties, and find
collaborative solutions to impediments.

2.1 Roles
There is perhaps an ideal set of roles in

Enterprise Scrum, but at this level diplomacy, skill
set and authority will make perfect role fulfillment
unlikely. In our company, the Director of Product
Management coordinates and reconciles value
research and prioritization, and is essentially the
Enterprise Product Owner. The VP of Engineering is
responsible for effort, and manages engineering,
including hiring, firing, budgeting and day-to-day
operations. The Enterprise ScrumMaster enforces the
Enterprise Scrum process. Several Product Managers
each hold responsibility for value research and
prioritization within one or more projects. Several
Project ScrumMasters each hold responsibility for
enforcing the Scrum process within one or more
projects. Tech Leads from different development
groups, the User Experience Manager and the
Operations Director can thoughtfully discuss
technical limitations, opportunities and blockers.
These people comprise the Enterprise Scrum Team.

2.2 Enterprise Backlog Items
Enterprise Backlog Items (EBIs) are the work

product of the Enterprise Scrum Team. Each EBI is a
project that must be at least one Scrum team-month
in effort (a Scrum team consists of the standard 5-9
people), and it must be feasible to finish an EBI in
three months. In practice, this means an EBI must be
between 1 and 9 team-months of effort (e.g. may
require 3 teams for 3 months).

2.3 Product Board
A Product Board, including our Product

Managers, Chief Architect, and Director of Business
Intelligence, prioritize all engineering work at our
company. The Product Managers each represent one
or more product lines (sometimes our Product
Managers act as Product Owners for individual
Scrum teams, sometimes they delegate Product
Owner responsibility to others). The Chief Architect
is responsible for infrastructure components,

scalability, fault-tolerance, modularity and
maintainability. The Director of Business Intelligence
manages financial reporting and sales tracking.

2.4 Quarterly Planning
Our planning process has shifted quarter-to-

quarter. We started with uninterruptable quarters, and
several stakeholders rebelled. We then attempted a
full “lean” approach (no Sprint time-box) with three-
month forward looking plans adjusted monthly, but
this was an overly demanding non-starter.

We tried various estimation techniques. When
our process allowed people to “game the system” to
staff their projects with the maximum engineers at
the expense of overall department productivity, they
typically did so.

Our current Quarterly Planning process involves
four iterative steps and starts 6 weeks before the start
of a quarter. Each iteration introduces greater care in
resource allocation: first Product Board members
estimate, then Team Leads estimate, then Teams
estimate, then Engineering assigns teams. By
iterating, we postpone the high cost of full team
estimation and resource assignment until priorities
are well considered and established.

In step 1, Product Board members propose
projects for the coming quarter, as Enterprise
Backlog Items, with clear acceptance criteria that
(hopefully) have independent business value. The
Product Board members themselves estimate effort in
Enterprise Story Points. Enterprise Backlog Items can
vary between 50 and 900 Enterprise Story Points. A
team of 3-4 developers (including QA and user-
experience staff) is 50 ESPs per month. A team of 5-
7 developers is 100 ESPs per month. We ban over-
size Scrum teams. We count each “part-time”
specialist as a full developer, because the dependency
and blocker problems they introduce typically slow
the team down.

This ESP metric slightly favors smaller teams,
which are known to be more productive per engineer,
and improves our ability to staff thoughtfully. When
we didn’t distinguish big teams from small, Product
Board members sought large teams almost
exclusively. Large teams tend to be more productive
per team but less productive per engineer.

To finish step 1, Product Board members
prioritize based on their own effort estimates.

In step 2 of Quarterly Planning, we first save
Product Board member estimates and then erase them
from public view, leaving only the EBIs and their
rank ordering. For each EBI, we find Team Leads in
the organization that can responsibly estimate it. We
remind every Team Lead to estimate the size of the
entire EBI based solely on the acceptance criteria,
even if it would extend beyond a quarter with teams
they think will work on it. We caution Product Board
members not to reveal their step 1 estimates, to avoid
biasing the result.

We then meet with Product Board members and
compare Team Lead estimates to their original
estimates. Where Product Board member and Team
Lead estimates differ, the responsibility falls on the
Product Board member to reduce the EBI acceptance
tests, or accept the Team Lead estimate. Product
Board members can reprioritize in this meeting.

We meet with executives and show them our
current proposed Quarter Backlog, using past
velocity as a guide to the new quarter’s capacity. We
typically draw a line at that capacity, but remind
execs that items close to the line are unlikely to be
completed, even if they are above the line. This is
their first opportunity to argue for reprioritizing EBIs
they think provide more long-term value.

In stage 3, we first save Team Lead estimates
and erase them from public view. For each EBI, we
identify teams likely to do the work and ask the
teams to estimate Enterprise Story Points in multiples
of 50 using Planning Poker [6]. We make a special
effort to avoid biasing the teams’ estimates. We try to
shield them from Product Board member and Team
Lead estimates. We also ask teams to free themselves
of any preconception that effort should fit into a
single quarter.

We meet again with the Product Board. We
compare Team Lead estimates with team estimates.
Product Board members then have a last chance to
reprioritize the backlog. If there are significant
changes, we share this with executives and obtain
their approval or advice.

In stage 4, engineering attempts to staff the
Enterprise Backlog, starting at the first EBI. At the
top of the list, there are usually reasonable teams to
staff EBIs. As we proceed through the list, teams
become less and less ideally suited for the EBIs
remaining. Engineering can choose to create teams
with reassigned staff members to suit an EBI, or can
decide not to staff an EBI due to lack of appropriate
people.

Self Organization We have tried several staffing
processes. In Q2, we staffed using a “self
organization” meeting. This process has not
ultimately been retained, but discussion of it may
provoke thought.

A representative of every existing Scrum team
attended the self-organization meeting. Such
representatives were team leads, not Product Owners
or ScrumMasters, and were empowered to reallocate
the people they represent to different teams.

Representatives came armed with sticky-notes
containing the names of people they represented. In
the meeting room, each EBI was written on a large
paper sheet. Representatives then milled around,
discussing options and assigning people to an EBI by
placing sticky-notes on the appropriate sheet. We
asked that representatives focus on making
assignments to the top-priority EBIs first.

In early parts of the meeting, the special skills of
some people made assignments obvious and rapid. In
later parts of the meeting, trade-offs got discussed
and difficult decisions were made.

Some EBIs are shorter than a quarter. In these
cases, representatives were asked to try to assemble
cross-functional teams that could move from one EBI
to another with minimum membership changes. They
were asked to make tentative transition assignments,
but Scrum teams were not truly committed to an EBI
until they started working on it.

In the meeting, representatives could assert that
an estimate was unrealistic for the people who would
be assigned the work. They could also discover that
optimal assignment made one or more EBIs
impossible to staff or complete in the quarter. If this
occurred with a low-ranked EBI “near the line,” it
caused few problems (controversy likely
accompanied this project already). But if it occurred
with a high-ranking EBI, it indicated that the EBI
wasn’t properly estimated. The easiest fix for this
problem was an ad hoc estimation, done on the spot.

Non-Self Organization In Q3, we stopped using
a formal Self Organization meeting, because the
overhead was too great and the outcome was mostly
predictable. Instead, we rely on ScrumMasters and
Managers working independently to identify
appropriate teams and gain mutual approval. This is a
work-in-progress, with the ultimate arbiter being the
VP of Engineering.

Self organized or not, stage 4 results in a
prioritized commitment from the Engineering
Department and a team assignment. We call this the
Quarter Backlog. The Engineering Department, as a
whole, is saying, “We believe we can do this in the
next quarter, and we are going to focus first on the
highest priority items in the list.” All participants are
aware that a low-ranked item might not be worked
on, and that other service priorities (Operations,
Marketing, Customer Support) rely partly on the rank
ordering.

2.5 Work
Each team then proceeds to work on its top-

priority EBI. We do not split teams between EBIs,
but we may put several teams on the top-most items

The Enterprise Scrum approach allows for
independent self-organization at the project (e.g.,
“Enterprise Backlog Item”) level. Theoretically,
teams working on an EBI need not use Scrum.
(Today, all but one EBI project currently uses at least
partial Scrum. Most use pure Scrum.)

Individual teams can choose the sprint length
they prefer. Larger projects can choose the Scrum-of-
Scrums form if they wish: some have an integration
team, some don’t; some have a coordination council,
some don’t.

We are aware that some Scrum scaling methods
recommend synchronizing sprint-length throughout
engineering, but we likely never will. We don’t have
enough meeting rooms to accommodate 25 teams
running sprint review, retrospective and planning.
Our use of Enterprise Scrum makes synchronized
Sprints largely unnecessary.

Engineering support services, such as
Operations, User Experience, Marketing and
Customer Support, are now starting to use the rank
ordering of EBIs to guide their own priorities.

For example, if Operations receives requests to
deploy several products in a week, by default it
deploys the highest-ranked EBI first. This ensures
that the projects with the greatest profitability get the
most rapid deployment. However, in consultation
with the VP of Engineering, we can change these
priorities.

2.6 Enterprise Scrum Meeting
The Enterprise Scrum Team meets every week,

in an Enterprise Scrum Meeting. It has two primary
agenda items: the Standup and the Solver Session.

Time Item
9:00am Pick note-taker and bailiff
9:02am Standup. Late fines enforced
9:27am Create Solver Session agenda
9:30am Solver Session (optional)
9:59am Meeting ends

Table 1. Enterprise Scrum Agenda

We ask a meeting attendee to take notes, and
another to serve as bailiff. The bailiff watches for late
attendees and assesses fines. This avoids disrupting
the Enterprise ScrumMaster (and therefore the
meeting).

The Standup portion (I admit it: we don’t all
stand up) is 30 minutes long, and Enterprise Scrum
team members are required to attend. We drive this
part from the Quarter Backlog, starting at the top-
ranked EBI and working down. For each EBI, we ask
its Product Board member: What did your teams
work on last week? What will your teams work on
this week? What blockers impede your productivity?
People can ask questions, but long-discussions are
deferred for the Solver Session.

When an EBI report seems too hollow, such as
“We worked, we are working, no blockers,” the
Enterprise ScrumMaster or VPs dig deeper. (It’s rare
that everything is running perfectly.) We frequently
ask a Project ScrumMaster or Tech Lead to confirm a
report, or “provide more color.”

The second half of the meeting is the Solver
Session, where we address blockers or critical issues.
It is optional; only those affected or who can help
typically remain.

2.7 Meeting Communication
Our company is physically dispersed. We use

GoToMeeting to communicate with remote
participants.

We ask a meeting attendee to take notes. These
notes are emailed broadly to anyone who wants to
subscribe; by doing this, we communicate company
priorities widely and frequently.

2.8 No Quarterly Demo
At present, we do not run a quarterly

review/demo meeting. Several EBIs are completed
per quarter, and many are released publicly. We are
uncertain whether a demo meeting would be
valuable, or how it would be structured.

2.9 Quarterly Retrospective
Unlike normal Scrum, in Enterprise Scrum we

host our retrospective after planning. The greatest
frustrations occur during Quarter Planning, and there
is no Quarterly Demo. Therefore, it was felt that we
should diagnose problems and propose solutions
immediately after the main action.

3 A Fractal View of Scrum

I assert that normal Scrum exhibits fractal self-
similarity, a property I recognized and used to scale
normal Scrum to Enterprise Scrum. Self-similarity is
a property of many edge-of-chaos systems [4]. Scrum
pioneers applied chaos theory to software
engineering problems [11]. It isn’t surprising that
Scrum has this property.

3.1 Fractals in Scrum

Figure 2. Fractal Self-Similarity

Fractals are geometric shapes that exhibit self-
similarity: some properties remain the same
regardless of scale. For example, Figure 1c is a
fractal (ignore the subcaptions for now). If you look
at the gross structure in Figures 1a, 1b and 1c, the
images are similar (squint if you are having trouble).
Going from Figure 1a to 1c, the metrics, complexity
and fine detail become greater, but the general outline
remains the same.

Normal Scrum exhibits self-similarity, so I'll use
it as an example.

Scrum has two feedback loops at different time
scales. Every sprint, the whole team discusses what
they did (Sprint Review), what they will do (Sprint
Planning) and what blocks progress (Sprint
Retrospective). Every day, the Standup meeting
requires team members to discuss what they did,
what they will do, and what blocks progress. The
rough purpose of each feedback loop is the same:
share information, get feedback, adjust goals, and
escalate impediments. Everything but the time-scale
is roughly the same.

Scrum has two completely separated estimation
scales. Whole teams groom and estimate effort for
Product Backlog Items, using Story Points, a unit
often roughly the size of estimated programmer days.
The whole team is considered responsible for a
Product Backlog Item. Individual team members
usually generate and estimate effort for Tasks, using
estimated programmer hours. The estimating person
is typically responsible for completing the Task.

The purposes of estimation is the same: allow the
team and individuals to prioritize activities on both
relative value and relative effort, limit effort to
respect the capacity of the team and individuals,
allow the team and individuals to focus on a small
number of activities, and gain greater understanding
of the actual capacity of the team and individuals.
They differ in scale.

Typical Scrum teams establish done criteria at
different scales, though people sometimes don't
realize it.

For example, a Task Done Criteria might include

1. unit tests were written and succeed,
2. a local build with all tests still succeeds,
3. the code was reviewed by another team

member,and
4. the work was checked into the source control

system.

A Product Backlog Item Done Criteria might
include

1. automated feature test was written and
succeeded,

2. continuous build system on all platforms still
succeeds,

3. team agrees it is good quality and marks it Done,
and

4. deployment package was produced and checked
into the repository.

Finally, a Sprint Done Criteria might include

1. upgrade and revert processes were performed on
a clean integration system,

2. Operations staff did a successful dry run install,
3. Product Owner reviewed the Sprint Backlog

Items, marked them Accepted or rolled them
forward, and closed the Sprint, and

4. product package was queued up in the
Operations Backlog.

Let's review the Done Criteria parallelism. The
1s confirm the work was done. The 2s ensure other
components in the ecosystem won't fail. The 3s cause
an external party to validate the work. The 4s publish
the work. They differ in scale. Now, when you look
at the subcaptions of Figure 2, they might make more
sense. There are many self-similarities in Scrum.

3.2 Enterprise Scrum as a Fractal
We've analyzed what existed before, normal

Scrum. Let's create something new, by scaling Scrum
up to meet the needs of a whole engineering
department. Enterprise Scrum looks like regular
Scrum, with everything writ large:

1. Story point size is estimated team months,
estimates come from architects and aggregated
teams,

2. Enterprise Backlog Items (EBIs) can be no
smaller than 1 team-month of work,

3. Sprint size is three months, i.e., a Quarter,
4. Standup meeting frequency is every week, and
5. Teams (not people) sign up for Enterprise

Backlog Items.

Sound simple? Like normal Scrum, Enterprise
Scrum is mechanically simple, but initiating it is not.
Executives will take time to adopt Enterprise Scrum.
Enterprise Scrum increases their accountability,
always a little scary. Enterprise Scrum exposes their
decisions so publicly that they can be second-
guessed, and this threatens control. Without
Enterprise Scrum, other departments could blame
delays on the engineering department. I don't think
you can adopt Enterprise Scrum unless your
President and relevant Vice Presidents support you.
We had executive support.

In other words, in this fractal the diplomatic
challenges scale up with the rest. The same
organizational impediments you faced with Scrum
adoption will emerge in Enterprise Scrum, writ large.
But the rewards scale too; the value of each EBI in
our Enterprise Scrum typically exceeds US$1M.

4 Challenges

As with all continuous improvement processes,
Enterprise Scrum exposes problems we didn’t realize
we had. Here I outline several “works in progress”
we are gradually addressing.

4.1 Flow Leveling for Limited Resources
At the enterprise level, problems emerge that

require classic “level the flow” Kanban solutions:

For example, quarterly sprints suggest that
several releases might occur at the end of the quarter,
but our operations group cannot manage lots of
simultaneous product releases. Running normal
Scrum at the project level made this even worse:
some projects can now produce a feasibly releasable
product in 4 weeks or less, and Product Managers
want to release those features to users.

Other services, such as user-experience testing,
branding, customer support and user-interface design,
are required to deliver value to end-customers. These
groups can experience fluctuating demand and must
therefore prioritize their work.

Our first cut at flow-leveling was to use the
Enterprise Backlog as a default priority ranking for
services. For example, if two projects needed
deployment services from Operations, we deployed
the higher ranked EBI first. While higher ranked
EBIs were demanding services from Operations,
lower ranked EBIs could not get services.

This worked surprisingly well. In most cases, the
highest ranked EBIs were the right projects to receive
service.

Because Operations was still overburdened, we
started to wonder whether we could manage its
capacity using Operations velocity. This led to
assessing “Ops Story Points” and attempting to level
Operations demand. The jury is out on whether Ops
capacity management actually levels the flow of
work to Ops.

However, a happy side effect of estimating Ops
Story Points for EBIs emerged: Developers and
product managers began to understand that easy-to-
deploy systems could increase their velocity “to the
happy end-user,” the ultimate done-criteria. Several
groups started automating RPM creation,
implementing hot-deployment strategies and
providing more complete deployment documents to
drive their Ops Story Points down.

4.2 Net Present Value Estimation
In each stage of planning, prioritization depends

on both effort and value estimation. The normal
Scrum process focuses heavily on effort estimation,
but largely ignores value estimation. Scrum makes
value the sole purview of the Product Owner; the
Product Owner articulates value by prioritizing the
Backlog after a Scrum team estimates effort. The
Product Owner’s difficult value estimation work, in
Scrum, is an “exercise left to the reader.”

In contrast, Scrum provides a sophisticated
process to get bias-free actual effort estimates,
though Scrum training and rituals hide this in team
velocity (actually, we depend on this hiding to
remove psychological bias). Burndown charts help
construct a linear mapping from estimated effort (in
Story Points) to actual effort (in team-time), while
handily avoiding the huge psychological and training
overhead of trying to correct the difference
(attempted by the Personal Software Process
promoted by SEI) [12]. Scrum seems to work
relatively better than previous software engineering
processes to estimate effort. Engineers seem to more
readily adopt it.

Enterprise Story Points, which are 100 points per
estimated team month, can be converted to estimated
cost straightforwardly. A single team-month is about
US$100,000 in loaded staff cost. Until inflation
erodes this convenience away, to get the estimated
cost of an EBI, we simply multiply its ESPs by
US$1000.

But effort and its cost are only half of the
prioritization problem; the other half is value. Normal
Scrum demands only that the Product Owner rank-
order groomed Product Backlog Items to articulate
value, and this is reasonable. It is impractical to try to
assess the monetary value of a Scrum team’s Product
Backlog Items [13]. But it is almost a moral
obligation with projects as large as an EBI, which
costs a minimum of $50,000 and as much as
$900,000.

Rank-ordering EBIs seems to require apples-to-
oranges comparisons, but we have started to rely on
Net Present Value (NPV) estimates as a common
metric. This allows us to compare infrastructure
projects, which often make more efficient use of
hardware or employees, against product features.

Our NPV calculations assume a 10% annualized
discount to cash, with a maximum forward-looking
window of 3 years. Net Present Value can compare a
cost-savings effort to one that generates revenue, or
compare something that generates one big pile of
cash (such as selling off a division) to something that
generates revenue over time (such as keeping that
same division and receiving its revenues yearly).

What does "annualized discount to cash" mean?
It means that money earned today is worth more than
money earned next year, based on an interest rate.
Furthermore, costs incurred today are more expensive
than costs paid next year, based on the same interest
rate. For example, if finishing EBI A would generate

$1M exactly 1 year from now, it is only worth
$909,091 in Net Present Value. This is because
$909,091 placed in a bank earning 10% annually will
be worth $1,000,000 a year from now.

What does "maximum forward-looking window
of 3 years" mean? We assert software businesses
have many near-term risks, therefore we can't see
further than 3 years ahead, and don’t count earnings
beyond that. For example, if finishing EBI B would
earn $1M on one day per year including today, its
Net Present Value is $2,735,537 = $1,000,000 (this
year) + $909,091 (next year) + $826,446 (two years
from now).

Whether an EBI provides cost-savings or
additional revenue, NPV provides a neutral measure
to make comparisons. The ratio of NPV to estimated
effort is roughly profit margin; the rank-order of
EBIs should be approximately in descending order of
that profit margin.

For example, in our first planning period for
Enterprise Scrum, a server-team added a 600 ESP
project to our Enterprise Backlog and requested
prioritization. But the description was indecipherable
to everyone outside the team: it was a refactoring
project to reduce hardware requirements. In an early
Product Board meeting, members dropped it off the
Quarter Backlog. The server group realized it had to
articulate the project’s value better. They computed
the cost-savings that would result from the project,
and discovered a multi-million dollar Net Present
Value. In the next Product Board meeting, its priority
was raised back into the quarter.

We have discussed Net Present Value with
others in the Scrum community, and get a mixed
reaction. Some argue that it stifles creative
exploration. Others state that all decisions should be
made with NPV as a basis. Some are exploring
methods by which experimentation can gain Net
Present Value for the information it reveals, such as
through Real Options [8]; we are open to this, but
have not yet found a practical way to do it. Our
current approach is to encourage calculating and
discussing NPV when it can be responsibly
determined, but not use NPV/effort as a required
ranking mechanism.

We suspect we will deepen our use of NPV as
we become more comfortable assessing the value of
market and technology experimentation. NPV is
widely used in other expensive and exploratory
fields, such as in oil exploration.

NPV generates controversy in our company for
these reasons:

1. Not everyone is mathematically inclined. Our
answer is to suggest they find colleagues to help.

2. Conservative interpretations of NPV generate
ridiculously low numbers; our answer is to
interpret NPV to include "the whole profit
picture" (i.e. ongoing revenues and costs,
including cost-reductions from partnering, cross-
product leverage, sales-training costs, marketing
channel expansion costs, etc.).

3. NPV estimators worry that others will later
compare their estimates to actual results, and
"throw them under the bus" if they were wrong.
Engineering departments using waterfall
processes suffered this problem, on the effort
side, when we would forecast release dates far
into the future. We partly mitigate the value
problem by keeping project-size small: 3 months
or less, and trying to make the project releasable
to customers. We actively discourage revisiting
old NPV estimates to judge the quality of a
product management decision. In short, NPV is
useful as a decision-making tool; for this
purpose, it is not an auditing tool.

4. Some projects have value, but two people
making reasonable assumptions could obtain
wildly different NPV. For example, security
projects can have huge dollar risks with very low
likelihood. An option in this case is to explicitly
state assumptions and provide a sample
calculation (in the EBI description), thus helping
people assess the value themselves. In these
cases, we sometimes leave NPV unstated.

We continue to promote and respect use of NPV
to assess value in all Enterprise Backlog Items until
someone nominates a reasonable alternative. That
said, if all we get is a prioritized list of EBIs from
Product Management and no NPV, Engineering has
enough information to deploy resources.

4.3 Fungible Teams
Normal Scrum favors fungible people, who write

software, test code, design schemas, or create release
artifacts as needs arise. The team wins or loses as a
group, and so its members should pitch-in to help
regardless of the task.

Enterprise Scrum favors fungible teams. Teams
gain efficiency as they work together over a long

time. Instead of breaking up these teams to create
theoretically optimal teams for a new quarter, we
should find ways to move whole teams to new EBIs.
We have found this to be challenging, but have
preserved some teams in radical reassignments, and
we continue to work on ways to do this. We believe
preserving teams improves morale, team
communication and productivity.

Because we use Scrum within teams, and
because we have made radical whole-team
reassignments, we can now estimate the learning
curve cost of new work.

4.4 Agile Programming Environments
Development environment, database, source

control and dependency management setup for an
unfamiliar project can be extremely complicated.
This is essentially “technical debt,” which also
appears in normal Scrum, but it is much more
apparent in Enterprise Scrum when teams move
between different products.

We use Maven, local databases, and other tools
to reduce the overhead of switching between projects,
but it is an ongoing effort to make the mechanics of
switching projects efficient. This problem is not as
prominent with single product engineering groups.

4.5 Measuring Improvement
We define company productivity as NPV/effort

(for a familiar analogy, national productivity is
measured as Gross Domestic Product, i.e., dollars per
person per year). However, we are often uncertain
how to measure productivity in a relatively short time
frame, so we can compare and select from alternative
approaches.

As we have deployed and improved our use of
both normal Scrum and Enterprise Scrum, we realize
that how we do things can make large productivity
differences. Sprint length, office layout, Scrum
training, how EBIs articulate acceptance criteria,
encouraging NPV analysis, etc. all make a difference.
But measuring improvement is not easy.

Scrum productivity metrics in peer-reviewed
articles often use value surrogates for productivity’s
numerator. Value surrogates can include function-
points or lines of code [19].

We find these surrogates inadequate to measure
Enterprise Scrum. One example illustrates the
problem: in many companies, the urgency to release a
new product can require “forking” the code from an

older product. The company then must maintain both
forks as long as the two products remain viable. To
pay for a short-term productivity gain, the company
pays in future productivity year-after-year. Forked
code is not just theoretical: I’ve seen this problem in
every multi-product company that has employed me.

Merging two code forks could increase NPV for
the company, due to increased future engineering
productivity, but it will likely decrease the number of
function-points. What simple metric can show this
productivity gain?

4.6 Corporate Governance
Perhaps the biggest challenge of all is scaling

Scrum to the operation of an entire company.
Enterprise Scrum is encroaching into this area, in part
because it promotes the use of Scrum in other large,
struggling creative departments, such as marketing.
But we are unsure whether it would work in less
creative or low-leverage departments.

Scrum works well with other egalitarian
management approaches, such as Market-Based
Management [10]. We are exploring these notions.

5 Conclusion

Our Enterprise Scrum process estimates projects
in “team months,” runs quarterly Sprints, assigns one
or more full teams to each project, meets in weekly
stand-ups, etc. At the project level and below, we
continue to use normal 1-to-4 week Sprints. Limited
ops and marketing capacity motivates “flow leveling”
in planning. Enterprise Scrum promotes cross-
product communication throughout the company, and
allows us to make more thoughtful tradeoffs.

At this writing (September 2009) we are
finishing the third Quarter of Enterprise Scrum. We
required diplomacy and our President’s buy-in to
start it. Organizational resistance may be the main
barrier to other organizations trying it, because top
executives and engineers must be willing to give it a
serious try. It was disruptive to our organization,
exposing many previously hidden conflicts and
revealing upstream root-causes once attributed to
engineering.

Our current results are good: We are establishing
a culture of transparency that seems now to pervade

the company; execs now understand where all the
engineering effort is deployed, product managers are
doing a better job of determining market value, we
are able to preserve teams longer-term, service
organizations (Operations, User Experience, Security
team, IT, etc.) use the Quarter Backlog to roughly
prioritize requests and feel empowered to say “No”
when overwhelmed. Finally, we are evangelizing this
approach beyond engineering to gain understanding
about where it best applies.

Everyone knows what projects are succeeding,
and which are having trouble. When a problem could
impede a release, it becomes rapidly visible and can
trigger immediate executive action.

Enterprise Scrum seems to work well, but we
don’t yet have clear metrics. We are producing more
frequent releases that better target user needs. Our
engineers are becoming more flexible and better
aligned with company success. We are working to
assess improvement numerically. Profitability may
ultimately be the only reasonable measure, but it
takes time to emerge.

6 Epilogue

The preceding material was originally presented
at HICSS (January 2010) with circumstantial
evidence that the enterprise-level prioritization drove
greater agility. This Epilogue (November 2011)
provides metrics showing the value of this approach.

We define an agility metric: the duration of
projects from the time a team of engineers started
working on a project until customers paid for the
project’s features. If project durations are long, the
company cannot satisfy changing markets and
customer demands rapidly. If the project duration is
short, the company can more rapidly deliver value to
meet newly detected market needs.

Colleagues in finance, the Agile Program Office
and I worked to measure agility over the lifetime of
the company, from its inception as the startup
ExpertCity, through its acquisition and formation as
Citrix Online, its formal adoption of the classic RUP
project methodology, its adoption of agile and
Enterprise Scrum, and finally through early 2011.

Figure 3 shows ExpertCity’s first project took 10
months from engineering team formation through
customer revenue. Its next project duration was
shorter, leveraging the screen sharing and HTTP
tunneling functionality it had built. From that point,
project duration gradually increased over time,
reaching a pre-acquisition peak of 14 months from
project inception to customer revenue.

Citrix acquired ExpertCity between December
2003 and March 2004, and named it Citrix Online.
The data point just prior to the “Startup acquired”
line shows a project midpoint; this project started
before the acquisition and was released after it. Much
more rapid releases followed this project, likely
exploiting additional resources injected into the
company by its acquirer. However, following the
acquisition we again see a trend that project duration
gradually increases over time. During this time,
Citrix Online formalized and implemented a
traditional project methodology called EASE 2.0,
based on RUP.

I joined the company in October 2007, amidst
complaints of missed deadlines and finger pointing.
An existing project was attempting to merge agile
and traditional project methods. My team started a
software project shortly after I joined, and we
decided to adopt pure Scrum.

A combination of increasingly missed deadlines,
and positive results from agile drove the company to
hire Ken Schwaber to train 60 ScrumMasters in
March 2008. After that training, projects gradually
moved to Scrum.

In October 2008, about half of engineering teams
were following Scrum principles at least loosely, but
upper-level management had not yet embraced agile
principles. The engineering department faced a long
list of projects and pressure to work on all of them.
We were spreading engineering talent thin and
dragging out project duration. Around this time, few
projects were released that gained customer revenue
(revenue is a key subtlety, there were non-paid betas
released at this time). The average project duration
peaked at 42 and 35 months, an alarming state that
could enable competitors to gain market share.

Figure 3 shows that, in organizationally stable
periods when waterfall methods were used, project
duration insidiously increased, jeopardizing company
success. This is likely due to the accumulation of
technical debt. With no automated testing, increasing
feature sets, supporting more operating systems,
browsers, product versions and code forks, each
release took longer to develop for and test.

In December 2008, we adopted Enterprise
Scrum, establishing 3 months as the desired project

Figure 3. Project duration at different project midpoint dates

duration, measuring engineering department velocity,
and asking upper management to restrict demands on
engineering to the top-priority projects. This began
an internally painful period for the company, with
much uncertainty and behavioral changes.

It became clear that broad agile training would
be required to sustain an agile culture. My team and I
provided 2-day agile training in most Citrix Online
locations. By mid-2011, we had trained 240
employees in engineering and other departments

(including marketing, finance and HR).

We changed two major aspects of Enterprise
Scrum in 2009 and 2010. First, we eliminated the
time-box punctuated by quarterly review,
retrospective and planning. It was very disruptive to
engineering staff to plan projects every quarter,
particularly when we were not sufficiently agile to be
certain that a quarterly end-user release was possible.
Instead, we allowed projects to start and terminate
mid-quarter. This, unfortunately, eliminated our
ability to thoughtfully track velocity, but reduce
context-switching costs.

Second, we realized that many surprise
impediments occurred within projects, which should
have been obvious up-front. We started using bulk-
estimation and established EBI Ready criteria to
ferret out these dangers before projects were

approved. We demanded that bulk-estimation show
project duration of less than 3 months. These
processes will likely be discussed in a later paper.

By the end of 2010, Citrix Online had driven its
average project duration to an average of 4 months.
This effect was so dramatic that the finance
department complained in mid-2010 that its financial
projections were rendered invalid: they assumed
depreciation (which coincides with first customer
revenue) would begin 9 months following project

inception. Someone actually asked me if we could
slow things down. But when we balanced the benefits
of better adaptation to the market against more
predictable depreciation, adaptation won.

In 2008, Citrix Online was #3 in web
conferencing market share, at 12%. Figure 4 shows
that Citrix Online lapped Microsoft Live Meeting
from 2008 through 2010, to become #2, and has
begun eroding Cisco Webex’s market share [15]. I
credit going agile with some of this gain: A company
requiring 35 months to complete a project could not
have done this.

Today, Enterprise Scrum is evolving to
incorporate road-mapping and lean concepts. It has
lost some parallels to Scrum, such as its quarterly
time-box, and gained others, such as EBI Ready.

Figure 4. Web Conferencing Market Share, 2009 and 2010

Citrix Online more rapidly adopted agile
methods than any other large multi-product company
I’ve encountered. I believe that Enterprise Scrum,
with its system-wide agile philosophy, helped drive
many of these improvements throughout the
company.

Dan Greening is an agile management
consultant. He was Citrix Online’s Director of
Engineering Productivity and User Experience, and
acted as Enterprise ScrumMaster through October
2011. He largely designed the Enterprise Scrum
process. He was the founder of several startups, some
successful, some not. He has been Principal
Investigator on three National Science Foundation
SBIR grants. He holds a Ph.D. in computer science
from UCLA.

7 References

1. Ken Schwaber, The Enterprise and Scrum, ISBN
978-0735623378, Microsoft Press 2007.

2. Craig Larman and Bas Vodde, Scaling Lean &
Agile Development: Thinking and
Organizational Tools for Large-Scale Scrum,
ISBN 978-0321480965, Addison-Wesley 2008.

3. Dean Leffingwell, Scaling Software Agility:
Best Practices for Large Enterprises, ISBN 978-
0321458193, Addison-Wesley 2007.

4. Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar
Saupe, Chaos and fractals.

5. Dan R. Greening, Scrum Self-Similarity,
http://scrumerati.com/2009/05/scrum-
fractals.html

6. Mike Cohn, Agile Estimating and Planning,
ISBN 978-0131479418, Prentice-Hall 2005.

7. Dan R. Greening, Marketing Scrum
Experimentation,
http://scrumerati.com/2009/05/marketing-
scrum.html

8. Chris Matts, Real Options and Agile Software
Delivery, http://bit.ly/eA1vl, Agile 2006.

9. Ken Schwaber and Mike Beedle, Agile Software
Development with Scrum, ISBN 978-
0130676344, Prentice-Hall, 2001.

10. Charles G. Koch, The Science of Success, Wiley,
2007.

11. Ken Schaber’s web site is called
http://controlchaos.com.

12. Personal Software Process, Wikipedia, 15 Sept
2009,
http://en.wikipedia.org/wiki/Personal_Software_
Process.

13. Luke Hohmann, Why Prioritizing your Product
Backlog for ROI Doesn’t Work,

http://www.enthiosys.com/insights-
tools/prioritizeforprofit1of3/.

14. Jeff Sutherland, Scott Downey and Bjorn
Granvik, Shock Therapy: A Bootstrap for
Hyperproductive Scrum, Proceedings of Agile
2009, Chicago IL (August 28, 2009).

15. Frost and Sullivan, Analysis of the Global Web
Conferencing Market, 30 Sept 2011.

