
things

1

2

3
4 5 6

7

www.stickyminds.com MARCH 2004 BETTER SOFTWARE 33

Define, Design, Develop

PROJECT CUSTOMERS EXIST IN ALMOST EVERY ORGANIZATION BUT OFTEN GO

by a different name: product manager, product owner, product champion, and so on.
Whatever you call him, a Project Customer is the person in the development process
who represents the real users and customers of the software. The Project Customer
works with real users and customers to understand their needs. He determines exact-

ly what features will be in the software, communicates
users’ needs to developers, and coordinates scheduling
decisions between the technology group and the rest of
the organization. The Project Customer is the driving
force behind what gets built into the software.

I’m a developer, but I’ve worked with enough good
(and bad) Project Customers to know that a good Proj-
ect Customer can turn a good product into a great prod-
uct—and a bad Project Customer can sink a project

Info toGo

■ Set clear, elevating project
goals, and expect great
things.

■ Provide guidance, support,
and recognition.

■ Prioritize and reprioritize
the work as user stories that
developers can estimate.

WantBetter
Software?

JustAsk.

 project customers can do
to turn a good product

into a great one.

by Mike Cohn

A
N

D
R

E
A

S
 K

U
E

H
N

/G
E

T
T

Y
 I

M
A

G
E

S

faster than any bad technology decision.
So how can you make sure you’re one of
the “good” guys? Follow these seven
simple rules.

Collaborate
If we developers aren’t 100% sure you’re
with us, then we may think you’re
against us. You need to establish right
from the start that as much as any pro-
grammer or tester, you are part of the
team. Watch how you treat the develop-
ers. Are you respectful of our time, or do
you cancel or not show for meetings? Do
you pass work on to us that you could
do, such as answering requests for infor-
mation from prospects? Do you say, “I
need you to finish by May” or “You’ll

need to work this weekend”? Or do you
join the team and say, “We need to figure
out how to get this done by May” or “It
looks like we’ll be here this weekend”?

We need to see you as an authority on
what users want and, more importantly,
what they value. Demonstrate that you
understand the product and how it will
be used. Master the software. I’ve seen
too many teams where the Project Cus-
tomer—who should know the software
better than anyone else—has one of the
developers give all the demos to
prospects. Developers resent this. We
know that usually you’re having us give
the demos because you don’t know the
software well enough to demo it yourself.
Learn the software, and then use demos
as an opportunity to show us how well
you know the software.

You might want to move as close to
us as you can get. Many of the agile
processes, such as Extreme Programming

and Scrum, advocate
that you move from
your office or cubicle

to sit right alongside the development
team. I won’t go so far as to say this is
necessary, but it sure does help.

Communicate
the Vision

Software developers need to know why a
project is being undertaken. The better
we understand the project vision, the bet-
ter able we will be to help the organiza-
tion achieve it. We look to you to estab-
lish and then communicate the vision.
We need what authors Larson and
LaFasto call “a clear, elevating goal.”

The best example of a clear, elevating
goal was President Kennedy’s call to land
a man on the moon before the end of the
1960s. It was clear: Everyone would
know if the goal had been met or not. It
was elevating: It is easy to imagine the
excitement of being on a team of such

34 BETTER SOFTWARE MARCH 2004 www.stickyminds.com

Define, Design, Develop

1

In 1994, Windows had not yet completely taken over the PC desk-
top. There were still plenty of DOS applications around, and they
often performed better than their Windows equivalents. However,
it was apparent that desktop applications were moving toward
Windows. I was working in a company that had a team rewriting
its bread-and-butter application for Windows. I wasn’t on that
team, but I had worked with the developers on a previous project.

Initially, the team completely bought into the vision of the
project. It wasn’t unusual for me to come into the office at 6:00
AM and find at least one person on that team already hard at
work. Eventually, though, their enthusiasm waned. One day, two
developers came to talk to me. They told me that their Project
Customer had instructed them to leave out absolutely all error
handling, do no unit testing of their code, stop doing code inspec-
tions, and so on. In other words, do shoddy work. These instruc-
tions went beyond the usual “speed up a lot and let quality suffer
a little.” He was telling them to ignore the quality of their work.
These developers were concerned about the thousands of users
who would eventually buy the software as a replacement for the
DOS system. They had been coming in early so they could achieve
the productivity their Project Customer wanted, while also coding
the system to their personal quality standards. They asked if I’d

talk to their Project Customer, my peer, and see if I could talk
some sense into him.

I agreed but was shocked at what I heard from him. He had no
intention of ever selling the product these two developers were
working on. He was convinced that he could keep the customers
on the current DOS platform for a few more years. He planned to
show the “new version” at an upcoming users’ conference,
promise that it would be coming soon, then entice customers to
sign three-year contracts with the company. He planned to start a
real project to develop a true replacement system during this time,
but he felt he needed to show a nearly-complete system in order to
lock customers in. His analogy for this ruse was to imagine our cus-
tomers walking around the set of a Hollywood Western. They’d see
the facades of various buildings, and it would look like everything
was real. But if they looked too closely, they’d see that it was all an
illusion. The Project Customer had gone so far as to give the project
the code name “Dodge City.”

Of course, the developers knew nothing of this and were
putting long hours into a product they thought was necessary for
the company’s survival as the world migrated toward Windows. I
convinced the Project Customer to come clean with the developers.
They were glad to finally understand the true vision for their prod-
uct, but obviously they never again trusted anything they heard
from that Project Customer. The real shame in this story is that if
the true vision had been laid out for these developers, they would
have worked just as hard, but their efforts would have been direct-
ed at the real goal of the project.

Working
in theDark

2

historic importance. Our project goal
should be just as clear. Of course, the
goal does not have to be quite as elevat-
ing as putting a man on the moon, but it
should be something we want to accom-
plish either because the goal itself is
meaningful or because of the challenge
represented by achieving it.

Here are some examples of clear, ele-
vating goals:

■ The product will win a “Product of the
Year” award from the magazine covering
that industry.

■ The product will reduce call duration in
our call centers by three minutes per call.

■ Make the product so simple to use that
we can cut training time from three days
to half a day.

Here are two examples of goals from real
projects I was on that the team did not
find elevating:

■ The product will be released with all
planned features by 30 May.

■ Release the product by September so
that we can go public.

The goal of releasing a product by a spe-
cific date failed to motivate us, because
there was no reason why 30 May was
any better a release date than 1 June.
Imagine if President Kennedy had instead
worded his goal as “put a man on the
moon before 15 June 1969.” That date
has far less impact than “by the end of
the decade.”

That doesn’t mean all date-based
goals are bad. As part of preparations for
Y2K, for instance, I managed a team that
was focused on updating a health care
application and deploying it to hundreds
of hospitals well in advance of 1 January
2000. That team had a deadline-based
goal that it found clear and elevating.
Team members knew there would be
consequences if a customer remained on
the old application a day too long. Date-
based goals can be elevating (they are al-
ways clear), but the date must have sig-
nificance.

The goal of releasing a product by a
certain date in order to initiate a public

offering didn’t work well because “make
a lot of money” is not an elevating goal
for many developers. Making money and
going public can be strong motivators
and valid goals but, in general, they are
not elevating.

Most developers will bend over
backwards for a project with a clear, el-
evating goal. As the Project Customer,
you are responsible for making sure the
project has one. Once you understand
what that goal is, you are responsible
for articulating it to the project team. If
you can’t articulate it, don’t start the
project until you can. According to Lar-
son and LaFasto, the lack of a clear, ele-
vating goal is the most frequently given
reason for why teams fail. (For more on
team success factors, see this issue’s
StickyNotes at www.stickyminds.com/
bettersoftware.)

Set High
Expectations

Have high expectations of us. We want
you to give us challenging problems—
make this run ten times faster or do that
in one-fourth the memory. Developers
thrive on these types of challenges when
given the freedom and time to pursue so-
lutions. Asking you to have high expecta-
tions doesn’t mean we’re asking for im-

possible deadlines. Most developers will
shrug off an impossible deadline and let
the solution take as long as necessary. We
don’t want “stretch goals” just so you
can see if you can make us develop soft-
ware faster. When we develop beyond a
certain speed, we take shortcuts that
come back to haunt us (and you). Very
few products are worth doing at high
speed, and all end up costing far more
over the next few versions.

Expect to be given working code at
least once a month. Think about the
project you’ve been involved in that had
the worst schedule slip. Was it a new 1.0
development effort, or was it an incre-
mental point-release such as 3.1? Most
likely it was a project aimed at producing
a new version 1.0 product. It is easier to
add features to a known, stable product
than it is to create a new product from
scratch. This means we should never let a
product—even a new one—be more than
a month away from that perfect, ship-
pable state. Naturally I’m not advocating
that every project should be shipped once
a month. But you should expect the de-
velopers to pull the project together at
least that often. Insist that once a month
we give you a demo (or let you go hands-
on with the software, if you prefer) of the
new functionality that was added during
the month. Remember that the product
should be good enough that you could
ship it if you wanted to—meaning it’s
been coded and tested.

Only trust what you can run. Like
Frodo with the ring, we’re tempted by
the evil within us. There is a part of us
that would love to sit around for a
month and just think, think, think
about the perfect way to design some
complicated aspect of the system. Natu-
rally, some of this thinking is necessary,
and we need time to do it, but what you
can’t do is let us count it as progress.
Don’t let us tell you things such as
“We’re done with analysis and design,

so we’re about halfway there.” We’re
half done when half the code is 100%
written and 100% tested.

Make us prove it. Every time I turn on
my computer, it runs the familiar power-
on self-test to check that the hardware is
working properly. Imagine how nice it
would be if your software did the same
thing. What if every night a large suite of
automated tests were run against the
product, and the results were in your

www.stickyminds.com MARCH 2004 BETTER SOFTWARE 35

Define, Design, Develop

Most developers will shrug off
an impossible deadline and let the solution take

as long as necessary.
We don’t want “stretch goals ...”

3

email in the morning? We can do that.
Insist that we do.

Know Your
Priorities

A couple of years ago, I was talking to a
colleague, and I made the comment that
a particular practice “would be good for
time-constrained projects.” He chal-
lenged me, “Show me a software devel-
opment project that is not time-con-
strained.” I laughed and said, “You’re
right. There’s no such thing.”

All projects are time-constrained to
some extent, so prioritize the functional-
ity you want built into the software. If
you say, “Everything is top priority,”
then when the project runs out of time,
you can expect a random set of function-
ality, as we won’t have known what was
truly the most important piece to finish
first. One of the best prioritization tech-
niques comes from the DSDM process
and is known as the MoSCoW rules:

■ “Must have” features are fundamental.

■ “Should have” features are important
but have a short-term workaround. If the
project has few time constraints, these
features are normally mandatory.

■ “Could have” features can be left out
of the release if time runs out.

■ “Won’t have in this version” features
are desired but acknowledged as needing
to come in a later release.

We also need a way to document which
features are more important within these
categories. We can prioritize features
along many dimensions. For example,
we can use technical factors:

■ The risk that the feature cannot be
completed as desired (for example, with
desired performance characteristics or
with a novel algorithm)

■ The impact the feature will have on
other features if it is deferred (We don’t

want to wait until the last iteration to
learn that the application is to be three-
tiered and multi-threaded.)

However, you may have your own set of
factors that could be used to prioritize:

■ The desirability of the feature to a
broad base of users or customers

■ The desirability of the feature to a few
important users or customers

■ The cohesiveness of the feature in rela-
tion to other features (For example,
“zoom out” may not be a high priority
on its own but may be treated as such be-
cause it is complementary to “zoom in,”
which is a high priority.)

There is an ongoing debate in software
development about whether a project
team should go after the riskiest parts
first or the most valuable parts first.
Probably the leading proponent of risk-
driven development has been Barry
Boehm. The leading advocate of doing
the “juicy bits” first has been Tom Gilb
(see this issue’s StickyNotes for more).

Projects should definitely err on the side
of doing the juicy bits first; that is, first do
the parts of a system that deliver the great-
est value to the intended users of the sys-
tem. However, this does not mean we can
ignore risk. As the Project Customer, you
are the one who must make the decision
after considering input from us.

Additionally, without knowing the rel-
ative cost of each feature, you cannot pri-
oritize them. It is a priority for me to drive
a Ferrari until I see the price tag, at which
point sending my daughters to college is a
much higher priority. Similarly, you may
think of some features as “must have” un-
til you consider the cost. Don’t prioritize
until you know the expected cost, in de-
velopment time, of each feature.

Who gives those estimates? The devel-

opers. Don’t force deadlines on the devel-
opers; instead, allow them to estimate
each feature. Then collaborate with the
developers so that the highest-priority
work is done first.

Tell Us Stories
If you want us to give you an estimate for
each feature, it is important that you pro-
vide us with features we can estimate.
Long lists of “The system shall …” state-
ments are not amenable to individual es-
timation. It is too hard and too unreli-
able to estimate statements such as:

■ The system shall accept passwords be-
tween six and ten characters long.

■ The system shall require passwords to
contain both alphabetic and numeric
characters.

■ The system shall require the user to
change her password every ninety days.

Features described like this are often too
entwined to be estimated independently
and effectively. We need to hear about fea-
tures in chunks that are big enough to un-
derstand but small enough to estimate. Ex-
treme Programming has introduced the
practice of user stories (see this issue’s

StickyNotes), which perfectly meet this
need. A user story is a short description of
functionality that will be valuable to either
a user or a purchaser of a system or soft-
ware. User stories are traditionally hand-
written on paper note cards because of
their low-tech elegance. Some typical user
stories for a job-posting and search site are:

■ A user can add a new résumé to the
site.

36 BETTER SOFTWARE MARCH 2004 www.stickyminds.com

Define, Design, Develop

If you want us to give you
an estimate for each feature,

it is impotant that you provide us with

features we can estimate.

5
4

■ A user can edit a résumé that is already
on the site.

■ A user can remove her résumé from
the site.

■ A user can mark a résumé as inactive.

■ A user can search job openings.

Unfortunately, programmers cannot take
a typically vague user story from a note
card and use only that to develop soft-
ware. The story cards are really re-
minders for the Project Customer and the
developers to talk about a feature. The
story card may be the most visible part of
a story, but the most important part is
the conversations that take place to re-
fine the story and communicate the de-
sired behavior of the software.

The user stories you write for us
should be tied to users’ goals and lead to
achieving the clear, elevating goal of the
project. A good Project Customer will
not just rattle off a list of stories; she will
be able to relate those stories to work-
flows and knowledge of how users will
interact with the system.

A big advantage of user stories is how
easy it is to use them with different levels
of precision. A project may begin with a
list of high-level, large stories (known as
“epics”) and then refine these as needed
into stories that are smaller and easier to
work with. Rather than forcing a project
to begin by identifying all requirements
in great detail, projects can begin with a
mixture of epics and smaller stories. Fea-
tures that won’t be started for weeks or
months can be left as epics; features that
are prioritized for early development can
be refined into smaller stories.

Change Your Mind
We ask you to prioritize the features at
the start of the project, but we also ex-
pect you to change your mind. On a
project lasting more than a couple of
months, it is unrealistic to expect an or-
ganization’s priorities to remain con-
stant. As a matter of fact, as you learn

more about how and to whom we’ll be
selling our product or service, and as we
collectively learn more about the soft-
ware we’re building, you should change
your mind about priorities.

For example, suppose we’re halfway
through a project and an opportunity
presents itself for us to sell the half-fin-
ished product to an initially small set of
customers. That might be worth consid-
ering. Alternatively, suppose that a fierce
competitor announces some new block-
buster feature. Adding that feature to our
product may become a higher priority
than much of the other remaining work.

Indecisiveness and random changes
are annoying, but changes based on new
knowledge are an important interruption.
In fact, if we’ve established a develop-
ment process that meets the high expecta-
tions you should have of us, our ability to
respond to change can become a competi-
tive advantage for our organization.

Provide Support
and Recognition

On many projects, you represent the en-
tire outside world to us. Give us support
and recognition, and we’ll be the team
you need and want. Withhold these, and
we’re likely to become bitter and resent-
ful. Support us by making sure we have
what we need to keep us productive.
Sometimes that means we need more
space, or space that’s quieter, or space
where we can be noisier and have lots of
conversations. We may need team rooms
or larger whiteboards. We may need the
air conditioning left on after 6:00 PM be-
cause some of us come in late and work
late. Support us through your words and
your actions. We know we can’t always
have what we want, but let us know that
if you could get it for us, you would.

Recognition can take a variety of
forms, and you need to choose one that is
appropriate to the team and its accom-
plishments. Find out how individuals
prefer to be recognized. Some employees
crave public recognition, such as being
singled out for praise at a company-wide
meeting; others dread it. Don’t save

recognition for the end of a project;
being recognized at the end is nice but
doesn’t do anything for morale in the
middle of a project. Remember how you
should expect to see working code from
us at least once a month? Use those occa-
sions as opportunities to provide recogni-
tion. While we’re showing you the demo,
toss out a compliment or two on pieces
you really like. Or if it’s appropriate,
praise the project in an email to your
boss, and copy the team.

Larson and LaFasto make the inter-
esting claim that insufficient support and
recognition are most likely to become a
problem for both poorly performing
teams and teams doing extremely well. A
poorly performing team often feels that it
cannot achieve its goals without addi-
tional support. A team doing extremely
well often feels it is getting less recogni-
tion than it deserves. So pay extra atten-
tion to both ends of the spectrum.

Conclusion
None of the rules I have described re-
quire any special skills, training, or do-
main knowledge. Anyone can do them.
Work as part of the project team, priori-
tize and re-prioritize the work, tell us
user stories, give us a clear, elevating
goal, set high expectations for our per-
formance, and offer your support and
recognition. We’ll reward you with supe-
rior results. {end}

Mike Cohn (mike.cohn@computer.org)
has twenty years of experience developing
software and is the vice president of engi-
neering at Fast401k. He is a founding
member and on the board of directors of
the Agile Alliance. Some ideas in this arti-
cle are taken from his most recent book,
User Stories Applied: For Agile Software
Development.

www.stickyminds.com MARCH 2004 BETTER SOFTWARE 37

Define, Design, Develop

Sticky
Notes

For more on the following topics go to
www.stickyminds.com/bettersoftware

■ Factors for team success
■ Risk vs. value
■ User stories

6

7

