
Rapid Software Development
through Team Collocation

Stephanie D. Teasley, Lisa A. Covi, Member, IEEE Computer Society,

M.S. Krishnan, Member, IEEE Computer Society, and Judith S. Olson

AbstractÐIn a field study conducted at a leading Fortune 100 company, we examined how having development teams reside in their

own large room (an arrangement called radical collocation) affected system development. The collocated projects had significantly

higher productivity and shorter schedules than both the industry benchmarks and the performance of past similar projects within the

firm. The teams reported high satisfaction about their process and both customers and project sponsors were similarly highly satisfied.

The analysis of questionnaire, interview, and observational data from these teams showed that being ªat hand,º both visible and

available, helped them coordinate their work better and learn from each other. Radical collocation seems to be one of the factors

leading to high productivity in these teams.

Index TermsÐWar rooms, collocation, rapid software development, metrics, software engineering, productivity.

æ

1 INTRODUCTION

AS firms prepare to compete in the e-business era, the
ability to produce quality software on time is emerging

as an important source of competitive advantage. Because
software development is notoriously slow, firms have been
experimenting with new approaches to software applica-
tion development to meet current business needs. In
response to these needs, firms have introduced quality
management approaches, automated software design and
development tools, and process improvement initiatives to
their traditional methodologies [30]. In spite of these efforts,
the software industry is still plagued by poor schedule, cost,
and quality numbers [21]. The reason behind this could be
due to either the true efficacy of the methods and tools or
the organizational challenges in successful adoption of
these proposed solutions or both. Or, these are not the
solutions.

Communication delays and breakdowns have been

identified as one reason behind such schedule and cost

overruns in software projects [29]. In this paper, we present

a field study of a new approach to software development

where the entire project team is radically collocated. By

collocation, we mean that the project team (including a

customer representative) is located in a single physical

room, called the war room.1 We hypothesize that this

collocation significantly reduces communication hurdles

in software projects. As a consequence, we expect that

projects using this approach will show significantly better

productivity and shorter schedules when compared to

projects that do not locate the entire project team in a war

room. Note that, in order to derive all the benefits of

collocating the entire software development team in a war

room, the size of the team and, consequently, the scope of

the project are also limited, a point we return to in our

discussion.
This paper addresses the following research questions:

. Does collocated software development lead to high-
er productivity?

. Does collocated software development lead to a
significantly shorter schedule?

. Does collocated software development lead to high
customer, sponsor, and project team satisfaction?

. What in the team's activity accounts for any
improvements in project performance?

We report on a field study conducted at a leading

Fortune 100 company where we tested the war room

approach on system development. The productivity and

schedule results of the collocated projects were significantly

better than both the industry benchmarks and the perfor-

mance of past application development projects within the

firm. We also found that, satisfaction of the project team,

customer, and the project sponsor were high with this new

approach to development, suggesting quality was not

sacrificed to speed. Our analysis of the questionnaire,

interview, and observational data from these teams pro-

vides evidence in support of the significant effect of

collocation in enhancing software productivity, cycle time,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2002 671

. S.D. Teasley is with the Collaboratory for Research on Electronic Work,
School of Information, University of Michigan, 1075 Beal Ave., Ann
Arbor, MI 48109-2112. E-mail: steasley@umich.edu.

. L.A. Covi is with the School of Communication, Information and Library
Studies, Rutgers University, 4 Huntington St., New Brunswick, NJ
18901-1071. E-mail: covi@scils.rutgers.edu.

. M.S. Krishnan is with the Business School, University of Michigan 701
Tappan St., Ann Arbor, MI 48109-1234. E-mail: mskrish@umich.edu.

. J.S. Olson is with the School of Information and Business School,
University of Michigan, 701 Tappan St., Ann Arbor, MI 48109-1234.
E-mail: jsolson@umich.edu.

Manuscript received 27 Sept. 2000; accepted 8 Nov. 2001.
Recommended for acceptance by K. El-Emam.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 112914.

1. The term ªwar roomº comes from the practice in WWII of having
major leaders confer in special rooms outfitted with key maps and other
information as well as the key figures ªat hand.º

0098-5589/02/$17.00 ß 2002 IEEE

and user satisfaction. Subsequently, the firm has adopted

this approach for all its application development needs.
The contributions of this paper are threefold.

1. Most studies on software productivity focus on
tools, people, or the development process used to
develop applications. Our focus in this paper is on
the effect of collocating the entire software project
team (including a customer representative) in a war
room, affecting the communication among team
members.

2. We study the effect of team collocation and the new
software environment on end user satisfaction. User
satisfaction is an important dimension that reflects
the perceived quality of the software product in the
eyes of the customer. We believe that only a few
studies in the literature have analyzed both produc-
tivity and some dimension of quality measure in the
same sample of projects [31].

3. We support our findings with qualitative data from
observations and interviews, similar to the research
methods advocated in [34]. These data help us better
understand the specific reasons behind the improve-
ments found.

This paper is organized in the following way: In the next

section, we discuss the theory behind why collocation of the

project team and customers in a war room might increase

productivity and satisfaction measures. We also describe

the new approach to product development undertaken at

our research site in this section. In Section 3, we discuss our

research design and measures, followed by our findings in

Section 4. We conclude our paper with directions for future

research.

2 THEORY

2.1 Software Development Methods

The traditional systems development life cycle method (also

referred to as the waterfall model) is still used in some

organizations for development of large and complex

systems [32], [41], [42]. This is a formal methodology that

divides the systems development life cycle in to six stages:

project definition, feasibility study, design, programming,

testing and installation, and systems support. This ap-

proach is resource intensive and inflexible, thus not suited

for more recent systems with unstructured and fluid

requirements. In addition, the physical separation of tasks,

such as design, coding, systems, and integration testing,

hinders communication, leading to cost and schedule

overruns due to rework.
New methods were introduced, including rapid applica-

tion development approaches such as prototyping, JAD

(Joint Application Development) [1], [2], [7], [16]. The

prototype and iterative development method is effective

for capturing the user interface requirements, but it works

less well for capturing requirements for more complex

systems whose inner workings are not reflected at the

interface.

2.2 The Role of Communications in
Software Projects

In large software projects, most of an individual program-
mer's time is spent in communicating with or looking for
information from other team members. Past studies have
indicated that less than 30 percent of a software develop-
ment programmer's time in large projects is spent on
traditional programming tasks and less than 20 percent of
the time is spent on coding [6]. The rest of the program-
mer's time is spent in design meetings, resolving problems
within the team, resolving specification misunderstanding
with the customers, other communications with the
customer and product testing, etc. Breakdowns in commu-
nication among development team members and with the
customers often cause schedule delays, especially from
rework when the delivered system is not fitting the users'
needs. In addition, unplanned interruptions constitute a
significant time sink, as does the time lost in context
switching [36].

In traditional software development, formal artifacts and
documents produced by one group are assumed to be
sufficient to provide all of the information needed by
another group. However, this is often not true [13]. The fact
that tasks such as design, coding, systems, and integration
testing are carried out by different groups hinders commu-
nication of both technical information as well as its
rationale, resulting in project delay and rework. Even the
physical separation of the software development team
within a building can create several forms of communica-
tion breakdowns. Specifically, there is a logarithmic decline
in communication with increased distance between colla-
borators, where any distance over 30 meters produced the
same low probability that team members would talk to one
another [4], [28].

Numerous ethnographic studies of teamwork reveal the
subtle, hidden nature of the features that make commu-
nication effective. For example, chapters by Suchman,
Hutchins and Klausen, and Heath and Luff in Engestrom
and Middleton [14] examined transcripts of conversation
from work practices to show how group work and work-
spaces are mutually constituted. Team members system-
atically communicate information both through various
posted messages, their glances, the arrangement of chairs
and desk, etc., to help accomplish the group task. Hutchins
[22] has proposed a theory of ªdistributed cognitionº to
provide a theoretical framework for understanding how
people exploit features of the social and physical world as
resources for accomplishing a task (also termed ªsocially
shared cognitionº in [38] or ªsituativity theoryº in [19]). In
this view, communication creates mutually held represen-
tations of the work that allow activity to proceed success-
fully within a complex and ever changing context [23], [46].
The concept of common ground is used to describe how
conversations proceed by creating shared understanding
between participants [11]. This shared understanding is
essential to conducting any joint activity.

Communication breakdowns occur in a number of ways.
For example, members of design teams can occasionally
mistakenly assume that the others share a common under-
standing of an issue when in fact they do not. These
confusions usually arise when each team member starts
with an unstated assumption and is not able to immediately

672 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2002

resolve the problem once a conflict is detected. When the
team members are physically separated, this error will often
not be detected until the following design review meeting
when the group meets face-to-face. Meanwhile, other
members of the team would have continued their work
assuming that there was no error. A design change to rectify
this mistake at a later stage will further add to the project
delay. Such situations are not uncommon in any large
software project.

The same phenomenon is also observed when there is a
communication breakdown between developers and the
customers of the project. Ambiguity of customer specifica-
tions and misunderstandings of specifications are prevalent
in customized application development. Once again, these
problems can be attributed to conflicting unstated assump-
tions that are not resolved immediately. We believe that
collocation of the project team and customers in a war room
can be effective in reducing such communication break-
downs and facilitating speedy resolution of conflicts. By
improving communication, productivity and timeliness of
the projects will also improve.

2.3 Team Collocation through ªWar Roomsº

In corporate America, collocation is achieved in what are
called ªwar rooms.º The term generally refers to an
immersive environment where experts, technology, man-
agers, and new products come together in a ªnerve centerº
to facilitate interactive information sharing with a minimum
of outside distraction. In this context, the war room
connotes the centralization of all the best resources into
one location to promote efficiency and timely work output.
These dedicated project rooms have also been called ªskunk
worksº [43] or ªteam roomsº [45]. There have even been
several software implementations of ªvirtual war roomsº
[18] in an attempt to achieve these same ends while being
remote, a point we will return to in the discussion.

Driving the popularity and perceived significance of war
rooms are several factors. First, it is economical to locate
people in the same place at the same time. Although today's
technology provides workers with a growing number of
tools for interacting over distance (e.g., e-mail, message
pagers, instant message systems, videoconferences), there is
an enduring preference for face-to-face interactions [10].
Further, with collocation, every team member can be aware
of all aspects of the project development without the need
for scheduling status meetings and circulating written
progress reports. Finally, corporate culture associates the
worker's status with size of a workspace, proximity to high
status co-workers, and other locally relevant perceived
advantages of a workspace [12]. Therefore, projects given a
dedicated space are seen by outsiders as places for high
intensity, important activities. Team members selected to
participate in war room projects are usually hand picked by
managers because of their particular skills and the
perceived importance of the project over the worker's
routine tasks.

Several evaluations of workspaces lead us to hypothesize
that collocating members of software development teams
will enhance productivity. In an investigation of integrated
product teams, Poltrock and Englebeck [37] described how
physical collocation facilitated collaboration and coordina-
tion within teams via both scheduled meeting and

opportunistic interactions. Sawyer and his colleagues found
that team rooms helped focus the activities of the work
group and isolated them from interruption from people
outside the project [43]. Becker and Steele at Cornell's
International Workplace studies program surveyed a
number of case studies on collaborative teams and found
that the way an office environment is organized influenced
work processes such as coordination, work patterns, and
communication internal and external to the team [8]. Kraut
et al. [28] studied collaboration between scientific research-
ers and found that the physical distance between offices
influenced the development of collaborative relationships
and the execution of the work. Allen's [4] investigation into
communication patterns in R&D laboratories found that
engineers are more likely to communicate with the
individuals nearest to them and that people tend to
communicate more with people from the same group than
from other groups. Although these studies provide
evidence that war rooms should increase communication
and facilitate efficient flow of work, they lack formal
indicators of measurable performance outcomes of a
project.

Some of these communication-related issues are resolved
partly in the various approaches to systems development
discussed above. However, we believe that collocation of
the entire team in a war room (with its concomitant limiting
of the scope of the project) can combine several advantages
to overcome the breakdowns. For example, collocating the
customer with the designers and developers brings in the
advantages of quick customer feedback and fast resolution
of requirement questions, as in prototyping and joint
application development. Collocating the team also helps
in resolving misunderstanding among designers and devel-
opers and also helps to ensure adherence to formal
procedures and quality standards, as in the traditional
waterfall model. Although collocation will increase inter-
ruptions, the interruptions are about the project itself,
producing only minimal loss from context switching.

3 RESEARCH OVERVIEW

The research reported here is a combination of case study
and empirical evaluation at a Fortune 100 automobile
company. Based on the literature on software development
methods, the auto company adopted a methodology that
included having the customer on the team, using a project
scoping method called ªtimeboxing,º and using iterative
development. Having seen the success reported about the
war room facilities in the Sun Java Factory [47], the
company had the teams use makeshift war rooms. For the
purposes of this paper, the facility will be called the Rapid
Software Development Center (RSDC), consisting of six war
rooms, additional conference rooms, and hotelling2 areas.

A number of measures were taken to assess the success
of the pilot teams:

. productivity indicators, standard measures includ-
ing time to market, and function points per staff
month,

TEASLEY ET AL.: RAPID SOFTWARE DEVELOPMENT THROUGH TEAM COLLOCATION 673

2. ªHotellingº refers to the practice of having cubicles nearby in which
one can work individually. The cubicles are not owned by anyone, but can
be used for a short period of time, much as a hotel room is not owned by
anyone but can be reserved and occupied for short periods of time.

. questionnaires, administered at the beginning, ask-
ing all team members about their predictions about
their satisfaction with the facilities and again, at the
end of the project, assessing their actual satisfaction
with the facilities,

. observations of two teams in depth from visits with
them about 8-10 hours a week for the duration of the
projects and interviewing the team members at
project completion,

. questionnaires, administered at project completion,
assessing team satisfaction, customer satisfaction,
and sponsor satisfaction for all pilot projects.

These measures are described in detail below.

3.1 The Setting

The facilities at the RSDC included a dedicated war room
for each software development team, conference rooms
nearby, and various hotelling cubicles for more private
work away from the team. Fig. 1 shows the general layout
of the rooms.

The dedicated war rooms were outfitted with individual
workstations for each of the team members. Workstations
were arrayed along the outside walls, shown in the lefthand
panel of Fig. 1, or in a ªEº shape, shown in the righthand
panel of Fig. 1, more like individual cubicles, but without
any walls. In the middle of the room was a worktable, the
walls had whiteboards, and flip charts on easels were
available as needed. Several rooms had printing white-
boards. Near the war rooms were conference rooms,
available on a first-come-first-served basis. One conference
room was outfitted with video conferencing for use in
remote meetings with others as needed. ªHotellingº
spaceÐunassigned, more private, quiet cubicles with work-
stations and phonesÐwas also available nearby.

These facilities contrast with the company standard of
relatively large individual cubicles with 6-foot walls near
cubicles with people who may or may not be associated
with the same project. The company benchmark statistics
come from people in such cubicles.

3.2 The Teams

The six teams ranged in size from six to eight people. Each
team consisted of a manager, three to four contract
employees for the programming, and two to three business
partners from within the company who were the intended

(internal) customers of the applications. The teams shared
the services of methodologists, technical architects, data-
base experts, and testing specialists. For the duration of the
RSDC project, the team members were not sharing their
time with any other projects.

The teams in this study differ from the teams included in
the company benchmark statistics on only these factors.
They were neither individually selected for the teams nor
newly hired for the experiment.

3.3 The RSDC Projects

The six projects selected as pilots for the RSDC were
developed on client-server and mainframe platforms. The
projects came from several areas of the company, including
manufacturing, finance, market and sales systems, and
purchasing. The projects included a global financial
database, a system to measure equipment effectiveness, a
retail website, a system to support competitive analysis, a
bill of material audit, and a database. The projects ranged in
size from 326 to 880 function points (a standard measure of
size described in Section 3.5).

3.4 The Software Development Method

The software development method used at the RSDC was
Fusion3 with several new features adopted from IBM's Rapid
Application Development (RAD) methodology. These fea-
tures were intended to be project accelerators for achieving
rapid development. Fusion is a variant of the waterfall model
that was customized within the organization and primarily
included all the phases in the waterfall model.

First, all projects were originally scoped to be between
600-1,000 function points and staffed to comprise about
24 staff months (usually, six people for four months).
Projects used a scoping method, called ªTimeboxing,º
which attempts to hold the time and staffing constant and
requires customers to determine the functionality they
most highly value that can be developed in the designated
time. The customer designates a coherent subset of features
that would produce a valuable product. These constraints
contrast with traditional scoping, which allows the

674 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2002

Fig. 1. The two kinds of room layouts at the trial facility for software development.

3. Fusion is a proprietary methodology of a large IT consulting
organization and this methodology has evolved with new software
development technologies and approaches (Ernst and Young and Microsoft
Alliance Background, www.microsoft.com/indonesia/enterprise/alliances
/ernstyoung_bg.htm.)

functionality to be the driver, with the team estimating
how many people and the length of time they believe it
will take to finish this. It is believed that the old method
produced systems that were large and difficult to finish
mainly because, as the time increased, the feature set
increased as well. The customer's needs changed while the
project was being programmed. By fixing the time to
approximately four months, it is less likely the customer's
needs will have changed, making the project more likely to
be completed. This is not a solution to all programming
projects because some have to be larger and more complex
than 600-1,000 function points. The hope is that these
larger projects can be broken up into subgoals, completed
in the facility, and then reassembled into coordinated code.
We readdress this issue again in the discussion section.

The software development method also included proto-
typing and iterative design. Although one of the potential
problems with prototyping is that the prototypes are not
thrown away but, rather, become the first partial version of
the final product, this was not a serious issue at RSDC. A
customer representative was always available with the
project team to assess the real product and provide his/her
inputs. The projects adhered to formal project management
planning and documentation procedures. The project
management method had suggested paths for different
kinds of projects and had formal processes for issue, risk,
and change management.

As noted earlier, prior to RSDC, the firm used the Fusion
methodology for software development, but the teams were
not physically collocated and did not use process accel-
erators such as timeboxing and prototyping. Hence, the
company baseline measures are computed using data
collected from projects that used the Fusion methodology.

3.5 Measures

3.5.1 Productivity Metrics

A number of measures have been used in previous research
to assess the output delivered from a software project
relative to the effort put in. These measures of output
quantity include lines of code, function points, feature
points, object points, etc. [9], [3], [5], [24]. The choice of a
productivity measure often depends on the domain of
software projects and the languages used. For example,
although lines of code is a measure of output, this metric is
suitable only when comparing projects developed in the
same language. Lines of code are not comparable across
different languages; a line of code in COBOL is not
equivalent to a line of code in Java. Similarly, object point
metrics are more appropriate when the projects being
compared all use object-oriented design. The projects at our
research site used several different languages for applica-
tions development, including both traditional third genera-
tion languages such as C and COBOL and more recent
object-oriented and web application development lan-
guages such as C++, Perl, and Java. Since only a few
projects in the sample used object-oriented design and
several languages were used for application development,
neither lines of code nor object point metrics are appro-
priate for productivity measurement for our research site.

Function point measure is an abstract but workable
surrogate measure for the output produced by software
projects that does apply to heterogeneous projects. This

metric is appropriate for measuring productivity and the
performance of application software projects and is widely
used in software organizations [25], [3]. Function points are
the weighted sum of five different factors related to the
application's functionality. These factors are: Inputs, Out-
puts, Logical files, Queries, and Interfaces. We used the
approach specified by the IFPUG (International Function
Points User Group, version 4.0) to compute the function
points of the applications in our data set. In this approach, a
raw score of function points is computed initially based on
a weighted count of the number of the five factors in the
application. This raw score is then adjusted to control the
inherent complexity in the projects based on inputs
collected on 14 complexity factors. These factors range
from complexities in the use of data communication
features, transaction rate, and data volume, differences in
performance objectives, online data updating features to
complexities from multiple sites, and reusability of the
application. Our productivity measure is defined as the
number of adjusted function points per staff month. In this
metric, we include the effort of all the project team
members, project manager, business analyst, architects,
technical writers, and other external experts, such as
database specialists, whose services were used in the
projects.

For the projects used in our samples, one Function Point
expert did all the counting. He has over 20 years of industry
experience. This expert is also IFPUG certified and has
managed several software metrics projects using Function
Points and other size measures.

3.5.2 Cycle Time

Our product schedule measure is defined in number of
months from the start of the project (i.e., when the project
specifications are agreed upon and signed off by the
customer and the project manager) to the time when the
project is completed (i.e., customer acceptance testing
whether the project is complete). Cycle time was measured
in the number of days between the start and end dates of
the project. Since the industry benchmarks and company
baselines measured cycle time in months, for ease of
interpretation and meaningful comparison, we converted
our cycle time measure from number of days to months,
retaining the precision up to two decimal places. For
relative comparison of the schedule time performance
across projects, we normalize the schedule time data for
the size of the projects, i.e., function points in our analysis.
Hence, our cycle time measure is defined as the number of
months per 1,000 Function Points.

3.5.3 User Satisfaction

Our team satisfaction measure had questions about the
organization of the team and the roles of each individual
member, satisfaction with the war room facility, and
satisfaction with facilities provided outside the war room.
Responses were obtained from multiple team members for
each project. The interrater reliability index ranged from
0.28 to 0.86. It was also noted that the responses from some
of the team members had no variance, with a constant high
satisfaction rating on all the items. One of the reasons for
the low reliability index in some projects may also be due to
the differences in the roles played by these team members.
Cronbach alpha for pooling the constructs under team

TEASLEY ET AL.: RAPID SOFTWARE DEVELOPMENT THROUGH TEAM COLLOCATION 675

satisfaction together ranged from 0.79 to 0.98. These
measures of construct reliability exceed the threshold
recommended in the literature [35]. For ease of interpreta-
tion, the composite score on team satisfaction was com-
puted as the average of item scores.

Our customer satisfaction measure had questions about
satisfaction with the system data, system performance and
functionality, ease of use, and system documentation and
training. The composite score on customer satisfaction is the
average of scores for these items. Although an attempt was
made to collect customer satisfaction data from more than
one end customer for each project, the response rate was
poor in some of the pilot projects and the final data ended
up from a single end customer contact. In the case of
projects where data from multiple respondents was avail-
able, the interrater reliability index ranged from 0.42 to 0.53.
We learned from the managers at our research site that one
of the reasons for this relatively low level of reliability could
be due to different application exposure and technical
background of these end users.

Our sponsor satisfaction data includes overall satisfac-
tion of the sponsor with the project, cost, schedule, quality,
and periodic information updates about the project. The
composite score on sponsor satisfaction is the average of
scores for these items. The individual item scores for
sponsor satisfaction was not available.

3.5.4 Measures of Team Experience

Questionnaires were used to measure the teams' experience
with and preferences for various kinds of workspaces and
tools. The entrance questionnaire had 103 items and took
about 20 minutes to fill out. This questionnaire asked about
the person's prior experience with various facilities and
technologies using a 5-point scale anchored with ªnot at allº
to ªvery frequently.º This questionnaire assessed team
members' predictions of how frequently they would use new
facilities like war rooms and hotelling space, conference
rooms, etc., at the RSDC, as well as new technologies
available to them at the RSDC. The questionnaire also asked
team members to assess how well they liked to work in
various facilities or with various tools, using a modified
5-point Likert4 scale with ªstrongly dislikeº to ªstrongly
likeº as the anchors. The questionnaire also asked for team
members to assess their preferred work styles, again using
5-point Likert scales, with ªstrongly disagreeº to ªstrongly
agreeº anchors. The latter items are listed in Table 1. Nine
items, starred in the table, are those intended to assess the
kinds of preferences that people have about characteristics
we thought the new facilities would engender, such as
being busy and collaborative.

The exit questionnaire contained 71 items of similar
content as in the entrance questionnaire. However, instead
of predicting the future frequency and preference, these
asked how often team members did use various spaces
and technologies and how they liked or disliked them. This
questionnaire also asked the same questions shown in
Table 1.

To better understand the reasons behind their opinions,
all the team members from two of the pilot teams were

interviewed individually. These team members were en-
couraged to talk freely about the advantages and disad-
vantages of the war rooms, the aspects of team dynamics,
their attitudes about the layout and equipment in the rooms,
why and when they used hotelling space, and other features
they would change to make the RSDC a better environment.
Interviews took about one hour to 1 1/2 hours.

For the two teams studied in-depth, we asked each
individual to fill out a short 9-item questionnaire biweekly,
asking both for some quantitative assessment of the team
and war rooms, but also some narrative responses to back
up their numerical responses, answering in each case ªWhy
or why not?º Although we will use a sample of their
statements in the results, the numerical data is not analyzed
because the response rate was variable and we only
assessed this in two groups.

We observed the same two teams for about 8-10 hours
over the course of the projects. We sat in on meetings and
conference calls, watched teams solve various kinds of
problems, and photographed their use of various artifacts
and tools in their rooms. Observation notes were tran-
scribed immediately after each observation session and then
clustered by two of the researchers into major categories of
actions/statements relating to the research question.

4 RESULTS

4.1 Project Outcomes in Pilot Projects

We compared the productivity of the pilot teams with two
benchmarks, shown in Table 2. We compared the Function
Points/Staff Month and the Cycle Time to both the industry
standard for projects of comparable sizes and the baseline
for the company. The company baseline numbers for
productivity and cycle time were computed in the following
way: A consulting firm that specializes in software metrics
was hired to select a sample of past software projects from
multiple domains and functional areas within the organiza-
tion. No outlier projects, i.e., extremely large in size or with
long duration, were selected. Ninety-three projects were
selected from different functional areas in the organization
and the productivity and cycle time numbers of these
projects were used to arrive at the company baseline
measures. The sample of projects were divided into two
subsamples based on the two major platforms for develop-
ment, i.e., mainframe and client-server used in the
organization. The baseline measures for mainframe and
client-server projects were computed using simple average
of the data collected from these projects.

Since the software process used prior to RSDC involved
all the stages in the waterfall model and the RSDC projects
started with a well-documented design, we adjusted the
baseline productivity and cycle time numbers to include
only the stages covered in RSDC.5

676 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2002

4. Likert scales are those that assess the respondent's agreement or
disagreement with a statement such as ªThis was an excellent course,º with
a 5-point scale below it reflecting the possible responses ªStrongly agree,
agree, neutral, disagree, and strongly disagree.º

5. While verifying whether the numbers given to us were comparable, we
found differing recollections. We therefore adopted a conservative approach;
we adjusted the company baseline numbers, assuming that the given
company baseline numbers were not adjusted, and included all the stages in
the waterfall model right from requirement specification. The software
engineering literature reports that the front-end investments (in terms of
effort and time) for the stages up to the detailed design in the waterfall model
range from 25-35 percent of the total development effort [9]. We
conservatively assumed that 35 percent of the time and effort was expended
in the stages up to the detailed design and adjusted the given baseline
numbers by multiplying the given number by 1/65 percent, i.e., 1.66.

The industry standard numbers were obtained from the

SPR database after adjusting for the size of the projects used

in our sample [26]. SPR presents industry benchmarks for

projects implemented on mainframe and client-server plat-

forms. These benchmarks are presented for project sizes

ranging from 200 to over 10,000 function points and are also

adjusted to include only the stages after detailed design in

the development process. We used these adjusted industry

benchmarks, often referred to as physical function point

measures, for projects with 600 function points in our

comparison shown in Table 2. We selected 600 function

points since the mean size of projects implemented in RSDC

is 600. The sample of pilot projects included an equal

number of mainframe and client-server projects and, hence,

we computed the average of mainframe and client-server

benchmark numbers for our comparison.
The pilot teams produced double the number of function

points per staff month from the previous company baseline

and more than double from the industry standard. Using

the variance of the measures among the six pilot teams in an

estimate of the variance of the means, the pilot team metrics
are significantly different from the means of both the
company baseline (t = 5.67, p < .001) and the industry
standard (t = 4.76, p < .001). The pilot teams did not have a
lower cycle time than either the company or industry
standard.

The team, sponsor, and end user satisfaction measures
are shown in Table 3. These scales ranged from 1 = very
dissatisfied to 5 = very satisfied. Although we do not have
baseline information with which to compare, the scores are
all high.

In summary, the pilot teams were remarkable in their
productivity while not sacrificing team, sponsor, or end
user satisfaction with the resulting products.

4.2 Is There a Sample Selection Bias in the
Pilot Teams?

Because the six teams studied here were pilot teams for the
RSDC, there is the possibility that they were unique in some
way that led to these significant productivity gains. To
explore this possibility, the same performance measures

TEASLEY ET AL.: RAPID SOFTWARE DEVELOPMENT THROUGH TEAM COLLOCATION 677

TABLE 1
The 16 Items Used in the Assessment of Workstyle

TABLE 2
Comparative Statistics on Productivity Measures

were gathered from seven teams subsequently using the
facility. We ensured that these projects had the same
mixture of mainframe and client-server platforms as our
pilot projects.

The results are shown in Table 4. Subsequent teams
were even more productive than the pilot teams.
Specifically, the Function Points per Staff Month almost
doubled (t (8) = 2.56, p < .03),6 whereas the Cycle Time
stayed the same (t(11) = 0.47, n.s.).

The satisfaction of the subsequent teams was very
similar to that of the pilot teams, as shown in Table 5.
(T tests comparing pilot teams with subsequent teams were
nonsignificant for all measures of satisfaction.)

The productivity gains shown by the pilot teams appear
not to be unique because subsequent teams using the RSDC
appear to show the same, or even greater, productivity. We
can only conjecture about why the second increase. There
may have been learning in the team members who had
already worked in the RSDC facility and were now part of
the follow-on teams. There may also have been learning in
the support people, including people who consult with
teams on process.

4.3 Behavioral Results

The questionnaires, interviews, and observations give
insight as to what was likely to have caused this
productivity increase.

4.3.1 Team Members Liked the War Rooms

Based on responses to the entry questionnaires, team
members had very little experience with war rooms prior
to being assigned to work at the RSDC. Using ratings on a
scale from 1 to 5, where 1 = not at all and 5 = very
frequently, our sample rated their prior war room experi-
ence at 2.17. The entry and exit questionnaires also asked
team members to rate how much they like working in
various types of workspaces (where 1 = strongly dislike to
5 = strongly like). As shown in Table 6, working at the
RSDC significantly increased their preferences for war
rooms (t (5) = 2.59, p < .05) and decreased significantly
preferences for working in cubicles (t (5) = 2.82, p < .05).

4.3.2 How Did the Teams Work in the War Rooms?

From the observations of the teams and the exit interviews,
war rooms were found to benefit software development by
supporting interactive, continuous communication between
the team members. The close quarters of war rooms
supported impromptu communication and allowed people
to overhear each other. For example, as shown in Fig. 2, the
team members easily moved from two small meetings to

one involving everyone because they could overhear each
other. One team member wrote: ªIt's great having everyone
in the same room; so people can be brought into discussions
on the fly and conversations can be overheard and
commented on when necessary.º

War rooms also provided other kinds of awareness. For
example, if someone was having difficulty with some aspect
of the coding or design, then others walking by, seeing the
activity over their shoulders, stopped to help the individual.
Also, when one team member was explaining something to
another, other team members could overhear and sponta-
neously interject commentary, clarifications, or corrections.
One team member commented that it was a good environ-
ment in which to learn. Coming into the team late, he was
able to come up to speed very quickly. Another commented
that she was able to learn by osmosis; she said that, even if
she didn't listen carefully, she could make mental notes of
what people were saying.

We also noticed that living in close proximity with others
seemed to promote horizontal communication between
team members so that team unity and coordination was
facilitated. One team member commented that it was easier
to develop a ªgroup mentality.º Another team member
noted that he felt he worked harder in this space; he was too
embarrassed to search on the web or read e-mail too much,
let alone make personal phone calls. Yet another wrote: ªFor
the most part, being located together in a small room tends
to be productiveÐkeeps us on track/focus and keeps
outside disturbances to a minimum.º

On the other hand, the fact that team members were in
interactive, continuous communication had several draw-
backs. First, overhearing distracts those doing work that
requires concentration. Programmers discussed their desire
to work in a ªflow state,º which they described as requiring
quiet for intensive concentration during debugging, pro-
blem solving, or coding. One programmer wrote: ªI would
be much more productive if I had time to myself.º Another
reported: ªI need to hypnotize myself to zone in on what
I'm doing. If anyone talks about something I have some
expertise on, I have half an ear to it.º

When there was more than one informal meeting going
on, the noise level would increase significantly. The rooms
often appeared strikingly chaotic and active to observers
and visitors. In addition, individuals reported being
distressed occasionally by the lack of privacy. To explain
why he had given the war room a low rating, one team
member wrote: ªLack of privacy. Eavesdropping is un-
avoidableÐconstantly getting sucked into side conversa-
tions. No place for refuge. I can't imagine what would
happen if [manager] had to reprimand a team memberÐ
who would then have to go back in and sit with them!º

Team members also reported being uncomfortable about
exposing half-baked ideas in front of the customer or
revealing that they had chosen to take various shortcuts in
the implementation. In addition, the increased visibility of
work led them to report that they felt their work was being
monitored too closely by their project manager. Living in
close quarters enhanced motivation by facilitating team
successes, but it also occasionally exacerbated tension and
bad feelings when things were not going well on the project.

When the war rooms got very noisy, team members
sometimes went to the nearby hotelling area or to a

678 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2002

6. The t test for Function Points per Staff Month as calculated adjusted
for unequal variance, F = 5.53, p < .04, which also alters the degrees of
freedom.

TABLE 3
Satisfaction Measures for our Pilot Teams

conference room to work. Although quiet and private, the

person lost the awareness that comes from overhearing

teammates and was not immediately available to them. In

addition, once out of the war room, there was no immediate

access to shared materials like the diagrams and lists on

whiteboards or flip charts. The major deterrent of the

hotelling area was that, in order to use it, the team member

had to physically withdraw from the team. This behavior

was informally discouraged as it was interpreted as

ªescapingº or ªhiding outº from the rest of the team, with

self-deprecating comments from the team members who

were left behind in the room. For example, team members

noting someone was packing up to leave would smile and

say, ªWas it something I said?º Some programmers did

leave occasionally, but they reported that they felt they

were supposed to work in the war room. One team member

who occasionally worked outside the war room wrote:

ªNeed to get away sometimes and think, but it is not easy to

switch environments quickly. You get used to an area.º

Several programmers reported that they would achieve this

desired quiet by coming in early or staying after others had

left in order to work with some peace and quiet in the war

room where they could view all the flip charts and

diagrams on the whiteboard.

4.3.3 How the Facilities Impacted the Collaboration

and Communication

The entry and exit questionnaires also revealed that

attitudes about the activity in the room changed over time.

As shown in Table 7, at project completion, individuals

were significantly less distracted by the presence of others

in the room (t (5) = 3.64, p < .01).

TEASLEY ET AL.: RAPID SOFTWARE DEVELOPMENT THROUGH TEAM COLLOCATION 679

TABLE 4
Comparison of the Pilot with Subsequent Teams in the RSDC

TABLE 5
Comparison of the Satisfaction of Pilot and Subsequent Teams in the RSDC

TABLE 6
Comparisons of Entry versus Exit Questionnaire Data

Fig. 2. Two phases of interaction in the RSDC: The team moving from two separate meetings to one central one, from overhearing.

Comments made in the interviews suggest why these
changes occurred. First, team members reported that they
learned to work in the noisy environment and were able to
ªtune inº and ªtune outº of the simultaneous activities. As
the project progressed through different stages, the advan-
tages of interaction became more relevant to the project and
to each individual's work. Over time, team members felt
that the familiarity with each other increased the ease and
enjoyment with which they could work in close proximity,
so that the lack of privacy and increased visibility became
less troublesome. Finally, as the project progressed, there
was less uncertainty about the project outcome, members'
roles, and the mechanics of the overall team process. As a
consequence, team members reported that concentration
was easier and there was less need to consult with the
project manager.

On the other hand, team members were increasingly
worried about having their individual contributions recog-
nized by their manager. They worried about how working
so closely as a team might detract from the perception of
their individual competence. They worried about how the
company's individual-based merit structure would
acknowledge the success of the group. Team members
reported being uncertain about the future once they left the
RSDC and returned to their regular positions. These
concerns suggest that the company reward structure might
have to be changed from individual to group-based if
employees are to feel comfortable leaving their regular
positions to participate in these kinds of group projects.

4.3.4 What Did Teams Use to Support Collaboration in

the War Rooms?

The whiteboards and flip charts located in the war rooms
supported collaboration by providing large public work-
spaces that served as a visible permanent record of group
activity and decisions. Knowledge workers in particular
can benefit from sharing external representations of their
expertise to articulate their work in progress and to solicit
feedback from others [34]. At the RSDC, the collaboration
tools were used for synchronous work, such as when
several team members would gather at them for small
meetings, and for asynchronous work, such as when an
individual would change or add something for others to
see. Teams used the whiteboards to keep the current
status of the project plan visible to everyone. In addition,
ªto-doº lists were also posted on whiteboards or
flipcharts to indicate progress and to note when an
individual team member was assigned responsibility for
an item. The large and public characteristics of these tools
helped the teams view progress at a glance. Teams also
made use of the printing capability of the whiteboards to

capture information posted there and make use of it at
their own desks. As one team member wrote: ªElectronic
white board rules.º Another wrote: ªI'm in love with the
electronic whiteboard. It's getting to where I can't think
or speak without it.º

4.3.5 Facilities to Support Various Modes of the Work

Based on the many hours spent observing the teams as they
worked in the war rooms, hotelling cubicles, and conference
rooms, we found that the teams worked in a number of
different modes through the life of the project. Synthesizing
the reports of the kinds of activity they were involved in at
various points and in various rooms,7 we identified nine
different kinds of work, shown in Table 8.

Being in a war room supported most modes of work
because the space was large enough to monitor (or not)
what was appropriate for each individual at any given time.
However, war rooms were not ideal for all nine modes of
work. On the occasions when the group activity did not
involve everyone (e.g., discussion about customer input,
training), people attempting to work alone while activity
surrounded them could be distracted. On some occasions,
meetings of a subset of team members moved to conference
rooms nearby. In addition, some war rooms were larger
than others, putting distance between the solo worker and
the subteam meetings. The distance reduced the noise and
allowed more parallel activities to occur without having to
change rooms. One team member said that he thought
being collocated would support some phases of develop-
ment more than others, that rapid debugging and integra-
tion were especially appropriate for this style of work.

Privacy was the second issue that affected the match
between work mode and facilities. Private conversations
with outsiders and conversations about political issues were
typically moved outside the war room. In fact, the most
frequent use of the hotelling area was to make private
phone calls. Political or sensitive issues were moved to
conference rooms so that there was no inappropriate
overhearing.

5 DISCUSSION

The data from this study are striking. Groups working in
the RSDC showed significantly improved productivity and
high levels of satisfaction by everyone involved, from team
member to customer. The significant improvements in
productivity over the company baseline are most likely

680 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2002

7. Lisa Covi, the main observer of these teams, has a number of years of
experience in systems analysis and design, as well as PhD training in
observational methods and codification. Because of her systems back-
ground, she knew the domain; because of her social science training, she
carefully followed the method of informed observation.

TABLE 7
Changes in Reported Attitudes about Activity in the War Rooms

due to the tight fit between the development method
(timeboxing) and the collaborative facilities. War rooms
contributed to the enhanced software development because
they constituted a collaborative information system, which
facilitated communication and continual awareness [23].

There has been a follow-on to the pilot projects at this
company. Because of the positive results for the pilot teams,
the company has built 112 war rooms in a facility solely
dedicated to software development. Groups of eight war
rooms constitute a ªneighborhoodº in which a central area
houses the support services (e.g., the database expert, the
methodologist, etc.). The rooms themselves are both large
and configured in the ªEº style used in a few of the pilot
teams (see Fig. 1). The entire end wall of the room is
whiteboard (and, indeed, they ask for stepladders so they
can use the entire surface). In informal training or status
meetings, teams project a laptop from a portable stand onto
the whiteboard, which has a semigloss surface suitable for
viewing.

This paper has shown that, when people are radically
collocated on a software development team using a variant
of Fusion that includes timeboxing, productivity goes up
and timeliness increases. Collocation brings interactive,
continuous communication, which allows overhearing and
awareness of teammates' activities. This helps for clarifica-
tion, problem solving, and learning. It also enhances team
building. Although there are disadvantages to the inter-
active, continuous communicationÐin that there is little
privacy, work is exposed, and interruptions occurÐpeople
perceive that the value of the coordination outweighs the
liabilities. This is an important result. There may be tools to
enhance software development and ways to choose expert
team members. But, one of the simplest solutions might be
to allow the team members the kind of easy access to each
other that occurs when they are collocated.

This is a serious challenge in the face of today's push to
constitute teams across geographic locations, called ªvirtual
collocation.º There are clear problems with remote teams.
There is evidence that software engineering, specifically the
closing of open issues, is done significantly more slowly
when it has to be coordinated across locations [20]. People
do not trust each other as much if they are from remote
locations [40]. And, partially distributed teams will reconfi-
gure work practices so that the tightly coupled work is all

being done by collocated members [34]. The challenges to
remote work are summarized in a recent paper with a
conclusion for a title, ªDistance Mattersº [33]. There may be
technologies in the future that provide the kind of
interactive, continuous communication that radical colloca-
tion gives. But, until that time, we will still see losses when
teams are not collocated.

Although this study presents empirical evidence and
valuable insights on the potential benefits of team colloca-
tion in software projects, there are some limitations. Because
our sample size is relatively small, the results need to be
validated using a larger sample. Our data sources are too
insufficient to rule out various possible confounds. We do
not have measures of the teams' incoming capabilities or
experience, we do not know if there was an altered
emphasis on designing for reuse, and we do not have
evidence to allow us to claim that this speed-up did not
result in poorer quality software, other than that the
sponsors and customers were satisfied. Also, note that the
industry benchmarks used for comparison in this study are
from the SPR database. Although we selected the appro-
priate benchmark figures noting the size of projects studied
in this sample, the SPR data is known to have some noise in
it due to multiple data sources and aggregation bias.

It is also possible that a major source of the productivity
enhancement came from the fact that the projects were
merely ªtimeboxed.º However, the fact that the company
invested substantial money in a new facility for team
collocation is a strong indicator that they felt the software
method alone was not driving the success of the RSDC
teams. In fact, referring to the new facility, a company Vice
President said: ªThe building is an essential tool for
achieving speed and productivity [because] it is all about
facilitating communication.º In addition, we believe both
manageable project scope and smaller team size may be
required to reap the full benefits of team collocation.
Collocation of large teams may not be feasible and can also
add to the complexity.

This raises a related issue. It is not clear how the results
of this study apply to large projects. Future research will
have to assess the company's current approach to large
projects, given these results. Faced with this issue, the
company is splitting large projects into smaller subsystems
and collocating these subsystem teams, putting associated

TEASLEY ET AL.: RAPID SOFTWARE DEVELOPMENT THROUGH TEAM COLLOCATION 681

TABLE 8
Nine Kinds of Work

teams in rooms in the same ªneighborhood,º a hallway of
war rooms with shared resources in the hall area and
lounge areas nearby.

We also do not have accurate information on the quality
of the software delivered by RSDC facility. There is a need
to assess the problems and defects encountered in both the
prerelease and postrelease of these software products to
end users to ensure that the up-front productivity and
cycle-time benefits are not at the cost of downstream
defects.

Also, we do not know without future research whether
the increased productivity was due to the Hawthorne
effect, where people merely worked harder because of the
novelty of the situation and the fact that we were collecting
data. Only by tracking additional follow-on teams for
whom this approach is not novel anymore can we discern
the answer to this. Long-term research is also the only way
to tell whether the teams were ªsprinting,º working extra
hard because the project was only a few months long. As
Kidder pointed out in ªThe Soul of a New Machine,º
however, this kind of sprinting leads to burnout and loss of
the best people [27]. We did hear comments that included:
ªIf all my projects used this methodology, I'd look for a
different job.º In contrast, however, recall that the general
sentiments were significantly more positive than their
going-in expectations and that there were a number of very
positive comments about how effective it was to have team
members ªat hand.º

ACKNOWLEDGMENTS

The authors are grateful for the access and support
provided by the automobile company involved in this
study. Additional support for the work was provided by
Steelcase, Inc., as a grant to the Collaboratory for Research
on Electronic Work (CREW) at the University of Michigan.
A shorter version of this paper was presented as ªHow
Does Virtual Collocation Help a Team to Succeedº at the
ACM Conference on Computer Supported Cooperative
Work (CSCW) 2000, December, Philadelphia [44]. That
paper reported on some of the results here, with particular
focus on how to support face-to-face groups in general and
implications for supporting long-distance teams to work as
well as these teams did. This paper has more theory, more
results from the interview data, and addresses the issues
having to do with software engineering in particular.

REFERENCES

[1] M. Alavi, ºAn Assessment of the Prototyping Approach to
Information Systems Development,º Comm. ACM, vol. 27, no. 66,
1984.

[2] M. Alavi, R. Nelson, and R. Weiss, ºStrategies for End-User
Computing: An Integrative Framework,º J. MIS, vol. 4, no. 3, 1988.

[3] A. Albrecht and J. Gaffney, ºSoftware Function, Source Lines of
code, and Development Effort Prediction: A Software Science
Validation,º IEEE Trans. Software Eng., vol. 9, no. 6, pp. 639-647,
Nov. 1983.

[4] T.J. Allen, Managing the Flow of Technology: Technology Transfer and
the Dissemination of Technological Information within the R&D
Organization. Cambridge, Mass.: MIT Press, 1977.

[5] R.D. Banker, S. Datar, C.F. Kemerer, and D. Zweig, ºSoftware
Complexity and Software Maintenance Costs,º Comm. ACM,
vol. 36, pp. 81-93, Nov. 1993.

[6] D. Barstow, ªArtificial Intelligence and Software Engineering,º
Proc. Ninth Int'l Conf. Software Eng., vol. 9, no. 5, pp. 541-561, 1987.

[7] R.L. Baskerville and J. Stage, ºControlling Prototype Development
through Risk Analysis,º MIS Quarterly, vol. 20, no. 4, 1996.

[8] F. Becker and F. Steele, Workplace by Design: Mapping the High
Performance Workscape. San Francisco: Jossey-Bass, 1995.

[9] B.W. Boehm, Software Engineering Economics. New York: Prentice
Hall, 1981.

[10] C.V. Bullen and J.L. Bennett, ªGroupware in Practice: An
Interpretation of Work Experiences,º Computerization and Con-
troversy, second ed., R. Kling ed., pp. 348-382, 1992.

[11] H.A. Clark, Using Language. Cambridge, U.K.: Cambridge Univ.
Press, 1996.

[12] L.M. Covi, J.S. Olson, E. Rocco, W.J. Miller, and P. Allie, ªA Room
of Your Own: What Do We Learn About Support of Teamwork
from Assessing Teams in Dedicated Project Rooms,º Cooperative
Buildings: Integrating Information, Organization and Architecture:
Proc. First Int'l Workshop, 1998.

[13] B. Curtis, H. Krasner, and N. Iscoe, ªA Field Study of the Software
Design Process for Large Systems,º Comm. ACM, vol. 31, no. 11,
pp. 1268-1287, 1988.

[14] Cognition and Communication at Work, Y. Engestrom and
D. Middleton, eds. Cambridge, U.K.: Cambridge Univ. Press,
1996.

[15] N.E. Fenton, Software Metrics: A Rigorous Approach. New York:
Chapman and Hall, 1996.

[16] M.D. Fraser, K. Kumar, and V.K. Vaishnavi, ºStrategies for
Incorporating Formal Specifications in Software Development,º
Comm. ACM, vol. 37, no. 10, 1994.

[17] W.W. Gibbs, ªSoftware's Chronic Crisis,º Scientific Am., pp. 86-95,
Sept. 1994.

[18] C.M. Giglio, ªBusiness Is War, But You Can Fight Back with a
Killer APPÐA Virtual War Roomº Infoworld, vol. 21, no. 18, p. 72,
1999.

[19] J. Greeno and J. Moore, ªSituativity and Symbols: Response to
Vera and Simon,º Cognitive Science, vol. 17, no. 1, pp. 49-59, 1993.

[20] J.D. Herbsleb, A. Mockus, T.A. Finholt, and R.E. Grinter, ªAn
Empirical Study of Global Software Development: Distance and
Speed,º Proc. 23rd Int'l Conf. Software Eng., pp. 81-90, May 2001.

[21] D.J. Hoch, C.R. Roeding, G. Purkert, and S.K. Lindner, Secrets of
Software Success. Boston: Harvard Business School Press, 2000.

[22] E. Hutchins, Cognition in the Wild. Cambridge, Mass.: MIT Press,
1995.

[23] E. Hutchins, ªConstructing Meaning from Space Gesture and
Speech,º Discourse, Tools, and Reasoning: Essays on Situated
Cognition, L.B. Resnick, R. Saljo, C. Pontecorvo, and B. Burge,
eds., pp. 23-40, 1997.

[24] J. Johnson, ªCHAOS: The Dollar Drain of IT Project Failures,º
Application Development Trends, vol. 20, no. 1, pp. 41-44, 1995.

[25] C. Jones, Applied Software Measurement: Assuring Productivity and
Quality. New York: McGraw-Hill, 1996.

[26] C. Jones, Software Assessments Benchmarks and Best Practices, New
York: Addison-Wesley, 2000.

[27] T. Kidder, The Soul of a New Machine. New York: Avon Books,
1982.

[28] R. Kraut, C. Egido, and J. Galegher, ªPatterns of Contact and
Communication in Scientific and Research Collaboration,º
Intellectual Teamwork: Social and Technological Foundations of
Collaborative Work, J. Galegher, R.E. Kraut, and C. Egido, eds.,
pp. 149-171, Hillsdale, N.J.: Erlbaum, 1990.

[29] R.E. Kraut and L.A. Streeter, ªCoordination in Large Scale
Software Development,º Comm. ACM, vol. 38, no. 7, pp. 69-81,
1995.

[30] M.S. Krishnan and M.I. Kellner, ªMeasuring Process Consistency:
Implications for Reducing Software Defects,º IEEE Trans. Software
Eng., vol. 25, no. 6, pp. 800-816, Nov./Dec. 1999.

[31] M.S. Krishnan, S. Kekre, C.H. Kriebel, and T. Mukhopadhyay,
ªAn Empirical Analysis of Productivity and Quality in Software
Products,º Management Science, vol. 46, no. 6, pp. 745-759, June
2000.

[32] K.C. Laudon and J.P. Laudon, Management Information Systems:
New Approaches to Organization and Technology: New Approaches to
Organizations and Technology. New York: Prentice Hall, 1998.

[33] G.M. Olson and J.S. Olson, ªDistance Matters,º Human Computer
Interaction, vol. 15, pp. 139-179, 2001.

682 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 7, JULY 2002

[34] J.S. Olson and S.D. Teasley, ªGroupware in the Wild: Lessons
Learned from a Year of Virtual Collocation,º Proc. Conf. Computer
Supported Cooperative Work, pp. 419-427, Nov. 1996.

[35] J.C. Nunnally and I.H. Bernstein, Psychometric Theory. New York:
McGraw-Hill, 1994.

[36] D.E. Perry, N.A. Staudenmayer, and L.G. Votta., ªPeople,
Organizations, and Process Improvement,º IEEE Trans. Software,
vol. 20, no. 7, pp. 36-45, July 1994.

[37] S.E. Poltrock and G. Engelbeck, ªRequirements for a Virtual
Collocation Environment,º Information and Software Technology,
vol. 41, no. 6, pp. 331-339, 1999.

[38] Perspectives on Socially Shared Cognition. L.B. Resnick, J.M. Levine,
and S.D. Teasley, eds. Washington: APA Press, 1991.

[39] B.R. Rich and L. Janos, Skunk Works. Boston: Little, Brown and
Company, 1994.

[40] E. Rocco, T.A. Finholt, E.C. Hofer, and J.D. Herbsleb, ªOut of
Sight, Short of Trust,º Presentation at the Founding Conf. European
Academy of Management, Apr. 2001.

[41] W. Royce, ªManaging the Development of Large Software
Systems: Concepts and Techniques,º WESCON Western Electronic
Show and Convention, 1970.

[42] W. Royce, Software Project Management: A Unified Framework.
Addison-Wesley, 1998.

[43] S. Sawyer, J. Farber, and R. Spillers, ªSupporting the Social
Processes of Software Development Teams,º Information Technol-
ogy and People, vol. 10, no. 7, pp. 46-62, 1997.

[44] S.D. Teasley, L. Covi, M.S. Krishnan, and J.S. Olson, ªHow Does
Radical Collocation Help a Team Succeed?º Proc. ACM Conf.
Computer Supported Cooperative Work (CSCW `00), pp. 339-346, Dec.
2000.

[45] S.D. Teasley and J. Roschelle, ªConstructing a Joint Problem
Space: The Computer as a Tool for Sharing Knowledge,º
Computers as Cognitive Tools, S.P. Lajoie and S.D. Derry eds.,
pp. 229-258, 1993.

[46] Java Technologies: Case Studies, Edward Jones: Retirement Planning
System: http://www.sun.com/java/javameansbusiness/edward
jones, 1999.

[47] ªHow to Jump-Start Java Computing Initiatives,º Sun J., Nov.
1999, http://www.sun.com/SunJournal/v1n4/global2.html.

Stephanie D. Teasley received the BA degree
from Kalamazoo College, the PhD degree in
psychology from the University of Pittsburgh,
and did postdoctoral research in the Psychology
Department at the University of Michigan. She is
a senior associate research scientist at the
Collaboratory for Research on Electronic Work
(CREW) and the School of Information, both at
the University of Michigan. She has also been
affiliated with the Learning Research and Devel-

opment Center in Pittsburgh and the Institute for Research on Learning
in Palo Alto, California. Her current research focuses on technology use
to support key aspects of collaboration for both collocated groups and
distributed groups. She is the collaboratory director for the Great Lakes
Regional Center for AIDS Research. Her work has appeared in several
journals, including Science, and she is the coeditor of Perspectives on
Socially Shared Cognition.

Lisa A. Covi earned the BS degree in mathe-
matics from Carnegie-Mellon University, Pitts-
burgh, and the MA degree in higher education
administration from Columbia University, New
York. She received the MS and PhD degrees in
information and computer science from the
University of California, Irvine, in 1996 and
conducted postdoctoral research with Teasley
and Olson at the University of Michigan, Ann
Arbor. She is an assistant professor in the

School of Communication, Information and Library Studies (SCILS) at
Rutgers, The State University of New Jersey. Her work has addressed
social aspects of computerization and networked information through
the study of digital libraries, collaborative technologies, and service-
provider collaboratories. She has published research findings in The
Journal of the American Society for Information Science & Technology,
Information Processing & Management, and The Information Society,
and serves on the editorial board of the Journal On Digital Information
(JODI). She has been a leader in the development of Rutgers' new
undergraduate major in Information Technology and Informatics and she
has given talks and workshops on teamwork and collaboration at more
than 80 colleges and universities. She is a member of the IEEE
Computer Society.

M.S. Krishnan received the PhD degree in
information systems from the Graduate School
of Industrial Administration, Carnegie Mellon
University, Pittsburgh, in 1996. He is the Mary
and Mike Hallman e-Business Fellow, the
director of eLab, and an associate professor of
computer information systems at the University
of Michigan Business School. He was awarded
the ICIS Best Dissertation Prize for his doctoral
thesis on ªCost and Quality Considerations in

Software Product Management.º His research interests include the
modeling of issues related to customer satisfaction, quality and
productivity in information systems, business value of information
technology, return on investments in software process improvements,
software engineering economics, metrics and measures for quality, and
customer satisfaction for products in software and information technol-
ogy industries. His research articles have appeared in several journals,
including Management Science, Information Technology and People,
Harvard Business Review, IEEE Transactions on Software Engineering,
Decision Support Systems, Information Week, and Communications of
the ACM. He is a member of the IEEE Computer Society.

Judith Olson received the BA degree from
Northwestern University, Chicago, the MS and
PhD degrees from the University of Michigan,
Ann Arbor, and did a year's postdoctoral
research at Stanford University, Palo Alto,
California. She is the Richard W. Pew Chair in
Human Computer Interaction at the University of
Michigan Business School, the School of In-
formation, and the Psychology Department. She
was a faculty member at Michigan in psychology

for 10 years before moving to a managerial position at Bell Labs in
human computer interaction. She returned to the University of Michigan
Business School and became a charter member of the new School of
Information. She is active in CREW (Collaboratory for Research on
Electronic Work) and has served on a number of national committees,
notably, the National Research Council on Human Factors. She has
more than 70 publications, with current research on the nature of
effective electronic support for remote group work.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dilb.

TEASLEY ET AL.: RAPID SOFTWARE DEVELOPMENT THROUGH TEAM COLLOCATION 683

